Suppr超能文献

对健康人体中动脉压力反射对交感神经放电模式贡献的药理学评估。

Pharmacological assessment of the contribution of the arterial baroreflex to sympathetic discharge patterns in healthy humans.

作者信息

Limberg Jacqueline K, Ott Elizabeth P, Holbein Walter W, Baker Sarah E, Curry Timothy B, Nicholson Wayne T, Joyner Michael J, Shoemaker J Kevin

机构信息

Department of Nutrition and Exercise Physiology, University of Missouri , Columbia, Missouri.

Department of Anesthesiology and Perioperative Medicine, Mayo Clinic , Rochester, Minnesota.

出版信息

J Neurophysiol. 2018 Jun 1;119(6):2166-2175. doi: 10.1152/jn.00935.2017. Epub 2018 Feb 28.

Abstract

To study how changes in baroreceptor afferent activity affect patterns of sympathetic neural activation, we manipulated arterial blood pressure with intravenous nitroprusside (NTP) and phenylephrine (PE) and measured action potential (AP) patterns with wavelet-based methodology. We hypothesized that 1) baroreflex unloading (NTP) would increase firing of low-threshold axons and recruitment of latent axons and 2) baroreflex loading (PE) would decrease firing of low-threshold axons. Heart rate (HR, ECG), arterial blood pressure (BP, brachial catheter), and muscle sympathetic nerve activity (MSNA, microneurography of peroneal nerve) were measured at baseline and during steady-state systemic, intravenous NTP (0.5-1.2 µg·kg·min, n = 13) or PE (0.2-1.0 µg·kg·min, n = 9) infusion. BP decreased and HR and integrated MSNA increased with NTP ( P < 0.01). AP incidence (326 ± 66 to 579 ± 129 APs/100 heartbeats) and AP content per integrated burst (8 ± 1 to 11 ± 2 APs/burst) increased with NTP ( P < 0.05). The firing probability of low-threshold axons increased with NTP, and recruitment of high-threshold axons was observed (22 ± 3 to 24 ± 3 max cluster number, 9 ± 1 to 11 ± 1 clusters/burst; P < 0.05). BP increased and HR and integrated MSNA decreased with PE ( P < 0.05). PE decreased AP incidence (406 ± 128 to 166 ± 42 APs/100 heartbeats) and resulted in fewer unique clusters (15 ± 2 to 9 ± 1 max cluster number, P < 0.05); components of an integrated burst (APs or clusters per burst) were not altered ( P > 0.05). These data support a hierarchical pattern of sympathetic neural activation during manipulation of baroreceptor afferent activity, with rate coding of active neurons playing the predominant role and recruitment/derecruitment of higher-threshold units occurring with steady-state hypotensive stress. NEW & NOTEWORTHY To study how changes in baroreceptor afferent activity affect patterns of sympathetic neural activation, we manipulated arterial blood pressure with intravenous nitroprusside and phenylephrine and measured sympathetic outflow with wavelet-based methodology. Baroreflex unloading increased sympathetic activity by increasing firing probability of low-threshold axons (rate coding) and recruiting new populations of high-threshold axons. Baroreflex loading decreased sympathetic activity by decreasing the firing probability of larger axons (derecruitment); however, the components of an integrated burst were unaffected.

摘要

为研究压力感受器传入活动的变化如何影响交感神经激活模式,我们通过静脉注射硝普钠(NTP)和去氧肾上腺素(PE)来调控动脉血压,并采用基于小波的方法测量动作电位(AP)模式。我们假设:1)压力反射卸载(NTP)会增加低阈值轴突的放电频率并募集潜在轴突;2)压力反射加载(PE)会降低低阈值轴突的放电频率。在基线状态以及稳态全身静脉注射NTP(0.5 - 1.2 μg·kg·min,n = 13)或PE(0.2 - 1.0 μg·kg·min,n = 9)期间,测量心率(HR,心电图)、动脉血压(BP,肱动脉导管)和肌肉交感神经活动(MSNA,腓总神经微神经ography)。NTP使BP降低,HR和整合的MSNA增加(P < 0.01)。NTP使AP发生率(326 ± 66至579 ± 129个APs/100次心跳)和每个整合爆发中的AP含量(8 ± 1至11 ± 2个APs/爆发)增加(P < 0.05)。低阈值轴突的放电概率随NTP增加,并且观察到高阈值轴突的募集(最大簇数从22 ± 3至24 ± 3,9 ± 1至11 ± 1个簇/爆发;P < 0.05)。PE使BP升高,HR和整合的MSNA降低(P < 0.05)。PE降低了AP发生率(406 ± 128至166 ± 42个APs/100次心跳),并导致独特簇减少(最大簇数从15 ± 2至9 ± 1,P < 0.05);整合爆发的成分(每个爆发中的APs或簇)未改变(P > 0.05)。这些数据支持在压力感受器传入活动调控期间交感神经激活的分层模式,其中活跃神经元的速率编码起主要作用,并且在稳态低血压应激时会发生高阈值单位的募集/去募集。新内容及值得注意之处为研究压力感受器传入活动的变化如何影响交感神经激活模式,我们通过静脉注射硝普钠和去氧肾上腺素调控动脉血压,并采用基于小波的方法测量交感神经输出。压力反射卸载通过增加低阈值轴突的放电概率(速率编码)和募集新的高阈值轴突群体来增加交感神经活动。压力反射加载通过降低较大轴突的放电概率(去募集)来降低交感神经活动;然而,整合爆发的成分未受影响。

相似文献

1
Pharmacological assessment of the contribution of the arterial baroreflex to sympathetic discharge patterns in healthy humans.
J Neurophysiol. 2018 Jun 1;119(6):2166-2175. doi: 10.1152/jn.00935.2017. Epub 2018 Feb 28.
2
Interaction of simultaneous hypoxia and baroreflex loading on control of sympathetic action potential subpopulations.
J Neurophysiol. 2024 Sep 1;132(3):1087-1097. doi: 10.1152/jn.00277.2024. Epub 2024 Aug 14.
3
Arterial baroreflex regulation of muscle sympathetic single-unit activity in men: influence of resting blood pressure.
Am J Physiol Heart Circ Physiol. 2020 Apr 1;318(4):H937-H946. doi: 10.1152/ajpheart.00700.2019. Epub 2020 Mar 6.
5
Sympathetic arterial baroreflex hysteresis in humans: different patterns during low- and high-pressure levels.
Am J Physiol Heart Circ Physiol. 2020 Oct 1;319(4):H787-H792. doi: 10.1152/ajpheart.00505.2020. Epub 2020 Aug 28.
6
Heterogeneous baroreflex control of sympathetic action potential subpopulations in humans.
J Physiol. 2020 May;598(10):1881-1895. doi: 10.1113/JP279326. Epub 2020 Apr 6.
7
[A new, spontaneous method for assessing sympathetic baroreflex function in humans].
Ann Cardiol Angeiol (Paris). 2012 Jun;61(3):188-92. doi: 10.1016/j.ancard.2012.04.010. Epub 2012 May 7.
8
Effect of varying chemoreflex stress on sympathetic neural recruitment strategies during apnea.
J Neurophysiol. 2019 Oct 1;122(4):1386-1396. doi: 10.1152/jn.00319.2019. Epub 2019 Aug 7.
9
Aging is associated with enhanced central but impaired peripheral arms of the sympathetic baroreflex arc.
J Appl Physiol (1985). 2022 Aug 1;133(2):349-360. doi: 10.1152/japplphysiol.00045.2022. Epub 2022 Jun 23.
10
Baroreflex resetting of human sympathetic action potential subpopulations during exercise.
J Neurophysiol. 2023 Apr 1;129(4):927-936. doi: 10.1152/jn.00347.2022. Epub 2023 Mar 22.

引用本文的文献

1
Interaction of simultaneous hypoxia and baroreflex loading on control of sympathetic action potential subpopulations.
J Neurophysiol. 2024 Sep 1;132(3):1087-1097. doi: 10.1152/jn.00277.2024. Epub 2024 Aug 14.
2
Central α-adrenergic mechanisms regulate human sympathetic neuronal discharge strategies.
J Physiol. 2024 Aug;602(16):4053-4071. doi: 10.1113/JP286450. Epub 2024 Jul 26.
3
A comparison of wavelet-based action potential detection from the NeuroAmp and the Iowa Bioengineering Nerve Traffic Analysis system.
J Neurophysiol. 2024 Jun 1;131(6):1168-1174. doi: 10.1152/jn.00448.2023. Epub 2024 Apr 17.
4
Role of the arterial baroreflex in the sympathetic response to hyperinsulinemia in adult humans.
Am J Physiol Endocrinol Metab. 2022 Apr 1;322(4):E355-E365. doi: 10.1152/ajpendo.00391.2021. Epub 2022 Feb 21.
5
Muscle sympathetic single-unit response patterns during progressive muscle metaboreflex activation in young healthy adults.
J Neurophysiol. 2020 Sep 1;124(3):682-690. doi: 10.1152/jn.00305.2020. Epub 2020 Jul 29.
6
Sympathetic neural recruitment strategies following acute intermittent hypoxia in humans.
Am J Physiol Regul Integr Comp Physiol. 2020 May 1;318(5):R961-R971. doi: 10.1152/ajpregu.00004.2020. Epub 2020 Apr 8.
7
Assessment of resistance vessel function in human skeletal muscle: guidelines for experimental design, Doppler ultrasound, and pharmacology.
Am J Physiol Heart Circ Physiol. 2020 Feb 1;318(2):H301-H325. doi: 10.1152/ajpheart.00649.2019. Epub 2019 Dec 30.
8
Effect of varying chemoreflex stress on sympathetic neural recruitment strategies during apnea.
J Neurophysiol. 2019 Oct 1;122(4):1386-1396. doi: 10.1152/jn.00319.2019. Epub 2019 Aug 7.
9
The role of the paravertebral ganglia in human sympathetic neural discharge patterns.
J Physiol. 2018 Sep;596(18):4497-4510. doi: 10.1113/JP276440. Epub 2018 Aug 19.

本文引用的文献

1
Ventilation inhibits sympathetic action potential recruitment even during severe chemoreflex stress.
J Neurophysiol. 2017 Nov 1;118(5):2914-2924. doi: 10.1152/jn.00381.2017. Epub 2017 Aug 23.
2
Central vs. peripheral determinants of sympathetic neural recruitment: insights from static handgrip exercise and postexercise circulatory occlusion.
Am J Physiol Regul Integr Comp Physiol. 2016 Dec 1;311(6):R1013-R1021. doi: 10.1152/ajpregu.00360.2016. Epub 2016 Oct 26.
3
Effects of aging and coronary artery disease on sympathetic neural recruitment strategies during end-inspiratory and end-expiratory apnea.
Am J Physiol Heart Circ Physiol. 2016 Oct 1;311(4):H1040-H1050. doi: 10.1152/ajpheart.00334.2016. Epub 2016 Aug 19.
4
Sympathetic neural recruitment strategies: responses to severe chemoreflex and baroreflex stress.
Am J Physiol Regul Integr Comp Physiol. 2015 Jul 15;309(2):R160-8. doi: 10.1152/ajpregu.00077.2015. Epub 2015 May 6.
5
Baroreflex mechanisms regulating the occurrence of neural spikes in human muscle sympathetic nerve activity.
J Neurophysiol. 2012 Jun;107(12):3409-16. doi: 10.1152/jn.00925.2011. Epub 2012 Mar 21.
6
Sympathetic neural recruitment patterns during the Valsalva maneuver.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:6951-4. doi: 10.1109/IEMBS.2011.6091757.
7
The use of real-time ultrasound in microneurography.
Auton Neurosci. 2011 Jul 5;162(1-2):89-93. doi: 10.1016/j.autneu.2011.03.007. Epub 2011 Apr 22.
8
Single-unit muscle sympathetic nervous activity and its relation to cardiac noradrenaline spillover.
J Physiol. 2011 May 15;589(Pt 10):2597-605. doi: 10.1113/jphysiol.2011.205351. Epub 2011 Mar 14.
9
Relationship between size and latency of action potentials in human muscle sympathetic nerve activity.
J Neurophysiol. 2011 Jun;105(6):2830-42. doi: 10.1152/jn.00814.2010. Epub 2011 Mar 23.
10
Sympathetic neural activation: an ordered affair.
J Physiol. 2010 Dec 1;588(Pt 23):4825-36. doi: 10.1113/jphysiol.2010.195941. Epub 2010 Oct 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验