Labat Marie, Brubach Jean Blaise, Ciavardini Alessandra, Couprie Marie Emmanuelle, Elkaim Erik, Fertey Pierre, Ferte Tom, Hollander Philippe, Hubert Nicolas, Jal Emmanuelle, Laulhé Claire, Luning Jan, Marcouillé Olivier, Moreno Thierry, Morin Paul, Polack Francois, Prigent Pascale, Ravy Sylvain, Ricaud Jean Paul, Roy Pascale, Silly Mathieu, Sirotti Fausto, Taleb Amina, Tordeux Marie Agnès, Nadji Amor
Synchrotron SOLEIL, Saint-Aubin, 91191 Gif-sur-Yvette, France.
Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, F-67000 Strasbourg, France.
J Synchrotron Radiat. 2018 Mar 1;25(Pt 2):385-398. doi: 10.1107/S1600577518000863. Epub 2018 Feb 28.
The investigation of ultrafast dynamics, taking place on the few to sub-picosecond time scale, is today a very active research area pursued in a variety of scientific domains. With the recent advent of X-ray free-electron lasers (XFELs), providing very intense X-ray pulses of duration as short as a few femtoseconds, this research field has gained further momentum. As a consequence, the demand for access strongly exceeds the capacity of the very few XFEL facilities existing worldwide. This situation motivates the development of alternative sub-picosecond pulsed X-ray sources among which femtoslicing facilities at synchrotron radiation storage rings are standing out due to their tunability over an extended photon energy range and their high stability. Following the success of the femtoslicing installations at ALS, BESSY-II, SLS and UVSOR, SOLEIL decided to implement a femtoslicing facility. Several challenges were faced, including operation at the highest electron beam energy ever, and achievement of slice separation exclusively with the natural dispersion function of the storage ring. SOLEIL's setup also enables, for the first time, delivering sub-picosecond pulses simultaneously to several beamlines. This last feature enlarges the experimental capabilities of the facility, which covers the soft and hard X-ray photon energy range. In this paper, the commissioning of this original femtoslicing facility is reported. Furthermore, it is shown that the slicing-induced THz signal can be used to derive a quantitative estimate for the degree of energy exchange between the femtosecond infrared laser pulse and the circulating electron bunch.
对发生在几皮秒到亚皮秒时间尺度上的超快动力学进行研究,如今是多个科学领域中非常活跃的研究领域。随着近期X射线自由电子激光(XFEL)的出现,它能提供持续时间短至几飞秒的极强X射线脉冲,这个研究领域获得了进一步的发展动力。结果,对使用机会的需求远远超过了全球现有的极少数XFEL设施的能力。这种情况促使人们开发替代的亚皮秒脉冲X射线源,其中同步辐射储存环上的飞秒切片设施因其在扩展光子能量范围内的可调谐性和高稳定性而脱颖而出。继美国劳伦斯伯克利国家实验室(ALS)、德国柏林电子同步加速器(BESSY-II)、瑞士光源(SLS)和日本紫外同步辐射装置(UVSOR)的飞秒切片装置取得成功之后,法国索莱伊同步加速器(SOLEIL)决定建造一个飞秒切片设施。面临了几个挑战,包括在前所未有的最高电子束能量下运行,以及仅利用储存环的自然色散函数实现切片分离。SOLEIL的装置还首次实现了同时向多条光束线输送亚皮秒脉冲。这一特性扩大了该设施的实验能力,其涵盖了软X射线和硬X射线光子能量范围。本文报道了这个原创性飞秒切片设施的调试情况。此外,研究表明,切片诱导的太赫兹信号可用于定量估计飞秒红外激光脉冲与循环电子束之间的能量交换程度。