Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , Singapore 117585 , Singapore.
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter , Chinese Academy of Sciences , Fuzhou , Fujian 350002 , China.
J Am Chem Soc. 2018 Mar 21;140(11):4035-4046. doi: 10.1021/jacs.7b13069. Epub 2018 Mar 9.
Despite the rapid development of molecular rotors over the past decade, it still remains a huge challenge to understand their confined behavior in ultrathin two-dimensional (2D) nanomaterials for molecular recognition. Here, we report an all-carbon, 2D π-conjugated aromatic polymer, named NUS-25, containing flexible tetraphenylethylene (TPE) units as aggregation-induced emission (AIE) molecular rotors. NUS-25 bulk powder can be easily exfoliated into micrometer-sized lamellar freestanding nanosheets with a thickness of 2-5 nm. The dynamic behavior of the TPE rotors is partially restricted through noncovalent interactions in the ultrathin 2D nanosheets, which is proved by comparative experimental studies including AIE characteristics, size-selective molecular recognition, and theoretical calculations of rotary energy barrier. Because of the partially restricted TPE rotors, NUS-25 nanosheets are highly fluorescent. This property allows NUS-25 nanosheets to be used as a chemical sensor for the specific detection of acenaphthylene among a series of polycyclic aromatic hydrocarbons (PAHs) via fluorescent quenching mechanism. Further investigations show that NUS-25 nanosheets have much higher sensitivity and selectivity than their stacked bulk powder and other similar polymers containing dynamic TPE rotors. The highly efficient molecular recognition can be attributed to the photoinduced electron transfer (PET) from NUS-25 nanosheets to acenaphthylene, which is investigated by time-resolved photoluminescence measurements (TRPL), excitation and emission spectra, and density functional theory (DFT) calculations. Our findings demonstrate that confinement of AIE molecular rotors in 2D nanomaterials can enhance the molecular recognition. We anticipate that the material design strategy demonstrated in this study will inspire the development of other ultrathin 2D nanomaterials equipped with smart molecular machines for various applications.
尽管在过去的十年中,分子转子取得了快速发展,但对于理解它们在超薄二维(2D)纳米材料中的受限行为以用于分子识别仍然是一个巨大的挑战。在这里,我们报告了一种全碳、2Dπ共轭芳香族聚合物,命名为 NUS-25,它含有作为聚集诱导发射(AIE)分子转子的柔性四苯乙烯(TPE)单元。NUS-25 块状粉末可以很容易地剥离成具有 2-5nm 厚度的微米级片状独立纳米片。TPE 转子的动态行为在超薄 2D 纳米片中通过非共价相互作用部分受到限制,这通过包括 AIE 特性、尺寸选择性分子识别和旋转能垒的理论计算在内的比较实验研究得到了证明。由于 TPE 转子部分受限,NUS-25 纳米片具有很强的荧光性。这种性质使得 NUS-25 纳米片可以用作化学传感器,通过荧光猝灭机制对一系列多环芳烃(PAHs)中的苊烯进行特异性检测。进一步的研究表明,与堆叠的块状粉末和其他含有动态 TPE 转子的类似聚合物相比,NUS-25 纳米片具有更高的灵敏度和选择性。高效的分子识别可以归因于 NUS-25 纳米片到苊烯的光诱导电子转移(PET),这可以通过时间分辨光致发光测量(TRPL)、激发和发射光谱以及密度泛函理论(DFT)计算来研究。我们的研究结果表明,在 2D 纳米材料中限制 AIE 分子转子可以增强分子识别。我们预计,本研究中展示的材料设计策略将激发其他配备智能分子机器的超薄 2D 纳米材料的发展,以用于各种应用。