文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于结构扰动方法预测潜在疾病相关 microRNAs。

Prediction of potential disease-associated microRNAs using structural perturbation method.

机构信息

Department of Computer Science, Xiamen University, Xiamen, China.

Department of Artificial Intelligence, Universidad Politécnica de Madrid (UPM) Campus Montegancedo s/n, Boadilla del Monte, Madrid, Spain.

出版信息

Bioinformatics. 2018 Jul 15;34(14):2425-2432. doi: 10.1093/bioinformatics/bty112.


DOI:10.1093/bioinformatics/bty112
PMID:29490018
Abstract

MOTIVATION: The identification of disease-related microRNAs (miRNAs) is an essential but challenging task in bioinformatics research. Similarity-based link prediction methods are often used to predict potential associations between miRNAs and diseases. In these methods, all unobserved associations are ranked by their similarity scores. Higher score indicates higher probability of existence. However, most previous studies mainly focus on designing advanced methods to improve the prediction accuracy while neglect to investigate the link predictability of the networks that present the miRNAs and diseases associations. In this work, we construct a bilayer network by integrating the miRNA-disease network, the miRNA similarity network and the disease similarity network. We use structural consistency as an indicator to estimate the link predictability of the related networks. On the basis of the indicator, a derivative algorithm, called structural perturbation method (SPM), is applied to predict potential associations between miRNAs and diseases. RESULTS: The link predictability of bilayer network is higher than that of miRNA-disease network, indicating that the prediction of potential miRNAs-diseases associations on bilayer network can achieve higher accuracy than based merely on the miRNA-disease network. A comparison between the SPM and other algorithms reveals the reliable performance of SPM which performed well in a 5-fold cross-validation. We test fifteen networks. The AUC values of SPM are higher than some well-known methods, indicating that SPM could serve as a useful computational method for improving the identification accuracy of miRNA‒disease associations. Moreover, in a case study on breast neoplasm, 80% of the top-20 predicted miRNAs have been manually confirmed by previous experimental studies. AVAILABILITY AND IMPLEMENTATION: https://github.com/lecea/SPM-code.git. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

摘要

动机:识别与疾病相关的 microRNAs(miRNAs)是生物信息学研究中的一项重要但具有挑战性的任务。基于相似性的链接预测方法常用于预测 miRNAs 和疾病之间的潜在关联。在这些方法中,所有未观察到的关联都根据它们的相似度得分进行排名。得分越高,存在的可能性越高。然而,大多数先前的研究主要集中在设计先进的方法来提高预测准确性,而忽略了研究呈现 miRNAs 和疾病关联的网络的链接可预测性。在这项工作中,我们通过整合 miRNA-疾病网络、miRNA 相似性网络和疾病相似性网络构建了一个双层网络。我们使用结构一致性作为指标来估计相关网络的链接可预测性。在此基础上,应用一种衍生算法,称为结构扰动方法(SPM),来预测 miRNAs 和疾病之间的潜在关联。

结果:双层网络的链接可预测性高于 miRNA-疾病网络,表明基于双层网络预测潜在的 miRNAs-疾病关联可以比仅基于 miRNA-疾病网络达到更高的准确性。SPM 与其他算法的比较表明了 SPM 的可靠性能,在 5 折交叉验证中表现良好。我们测试了 15 个网络。SPM 的 AUC 值高于一些知名方法,表明 SPM 可以作为一种有用的计算方法,用于提高 miRNA-疾病关联的识别准确性。此外,在一项乳腺癌的案例研究中,前 20 个预测 miRNAs 中有 80%已经被之前的实验研究手动证实。

可用性和实现:https://github.com/lecea/SPM-code.git。

补充信息:补充数据可在生物信息学在线获取。

相似文献

[1]
Prediction of potential disease-associated microRNAs using structural perturbation method.

Bioinformatics. 2018-7-15

[2]
Prediction of Potential Disease-Associated MicroRNAs by Using Neural Networks.

Mol Ther Nucleic Acids. 2019-6-7

[3]
NTSMDA: prediction of miRNA-disease associations by integrating network topological similarity.

Mol Biosyst. 2016-6-21

[4]
Uncover miRNA-Disease Association by Exploiting Global Network Similarity.

PLoS One. 2016-12-1

[5]
NEMPD: a network embedding-based method for predicting miRNA-disease associations by preserving behavior and attribute information.

BMC Bioinformatics. 2020-9-10

[6]
A novel computational model based on super-disease and miRNA for potential miRNA-disease association prediction.

Mol Biosyst. 2017-5-30

[7]
Prediction of disease-related microRNAs by incorporating functional similarity and common association information.

Genet Mol Res. 2014-3-24

[8]
Prediction of Disease-related microRNAs through Integrating Attributes of microRNA Nodes and Multiple Kinds of Connecting Edges.

Molecules. 2019-8-26

[9]
MDHGI: Matrix Decomposition and Heterogeneous Graph Inference for miRNA-disease association prediction.

PLoS Comput Biol. 2018-8-24

[10]
Predicting miRNA-disease association based on inductive matrix completion.

Bioinformatics. 2018-12-15

引用本文的文献

[1]
DTI-MHAPR: optimized drug-target interaction prediction via PCA-enhanced features and heterogeneous graph attention networks.

BMC Bioinformatics. 2025-1-13

[2]
Prediction of miRNA-disease association based on multisource inductive matrix completion.

Sci Rep. 2024-11-11

[3]
CDMPred: a tool for predicting cancer driver missense mutations with high-quality passenger mutations.

PeerJ. 2024

[4]
A method for miRNA diffusion association prediction using machine learning decoding of multi-level heterogeneous graph Transformer encoded representations.

Sci Rep. 2024-9-3

[5]
TriFusion enables accurate prediction of miRNA-disease association by a tri-channel fusion neural network.

Commun Biol. 2024-8-30

[6]
Computational prediction of new therapeutic effects of probiotics.

Sci Rep. 2024-5-24

[7]
Prediction of miRNA-Disease Associations by Cascade Forest Model Based on Stacked Autoencoder.

Molecules. 2023-6-27

[8]
Golgi_DF: Golgi proteins classification with deep forest.

Front Neurosci. 2023-5-12

[9]
Link Prediction with Continuous-Time Classical and Quantum Walks.

Entropy (Basel). 2023-4-28

[10]
Prediction of miRNA-disease associations in microbes based on graph convolutional networks and autoencoders.

Front Microbiol. 2023-4-28

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索