Department of Computer Science, Xiamen University, Xiamen, China.
Department of Artificial Intelligence, Universidad Politécnica de Madrid (UPM) Campus Montegancedo s/n, Boadilla del Monte, Madrid, Spain.
Bioinformatics. 2018 Jul 15;34(14):2425-2432. doi: 10.1093/bioinformatics/bty112.
MOTIVATION: The identification of disease-related microRNAs (miRNAs) is an essential but challenging task in bioinformatics research. Similarity-based link prediction methods are often used to predict potential associations between miRNAs and diseases. In these methods, all unobserved associations are ranked by their similarity scores. Higher score indicates higher probability of existence. However, most previous studies mainly focus on designing advanced methods to improve the prediction accuracy while neglect to investigate the link predictability of the networks that present the miRNAs and diseases associations. In this work, we construct a bilayer network by integrating the miRNA-disease network, the miRNA similarity network and the disease similarity network. We use structural consistency as an indicator to estimate the link predictability of the related networks. On the basis of the indicator, a derivative algorithm, called structural perturbation method (SPM), is applied to predict potential associations between miRNAs and diseases. RESULTS: The link predictability of bilayer network is higher than that of miRNA-disease network, indicating that the prediction of potential miRNAs-diseases associations on bilayer network can achieve higher accuracy than based merely on the miRNA-disease network. A comparison between the SPM and other algorithms reveals the reliable performance of SPM which performed well in a 5-fold cross-validation. We test fifteen networks. The AUC values of SPM are higher than some well-known methods, indicating that SPM could serve as a useful computational method for improving the identification accuracy of miRNA‒disease associations. Moreover, in a case study on breast neoplasm, 80% of the top-20 predicted miRNAs have been manually confirmed by previous experimental studies. AVAILABILITY AND IMPLEMENTATION: https://github.com/lecea/SPM-code.git. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
动机:识别与疾病相关的 microRNAs(miRNAs)是生物信息学研究中的一项重要但具有挑战性的任务。基于相似性的链接预测方法常用于预测 miRNAs 和疾病之间的潜在关联。在这些方法中,所有未观察到的关联都根据它们的相似度得分进行排名。得分越高,存在的可能性越高。然而,大多数先前的研究主要集中在设计先进的方法来提高预测准确性,而忽略了研究呈现 miRNAs 和疾病关联的网络的链接可预测性。在这项工作中,我们通过整合 miRNA-疾病网络、miRNA 相似性网络和疾病相似性网络构建了一个双层网络。我们使用结构一致性作为指标来估计相关网络的链接可预测性。在此基础上,应用一种衍生算法,称为结构扰动方法(SPM),来预测 miRNAs 和疾病之间的潜在关联。
结果:双层网络的链接可预测性高于 miRNA-疾病网络,表明基于双层网络预测潜在的 miRNAs-疾病关联可以比仅基于 miRNA-疾病网络达到更高的准确性。SPM 与其他算法的比较表明了 SPM 的可靠性能,在 5 折交叉验证中表现良好。我们测试了 15 个网络。SPM 的 AUC 值高于一些知名方法,表明 SPM 可以作为一种有用的计算方法,用于提高 miRNA-疾病关联的识别准确性。此外,在一项乳腺癌的案例研究中,前 20 个预测 miRNAs 中有 80%已经被之前的实验研究手动证实。
可用性和实现:https://github.com/lecea/SPM-code.git。
补充信息:补充数据可在生物信息学在线获取。
Bioinformatics. 2018-7-15
Mol Ther Nucleic Acids. 2019-6-7
PLoS One. 2016-12-1
PLoS Comput Biol. 2018-8-24
Bioinformatics. 2018-12-15
Sci Rep. 2024-5-24
Front Neurosci. 2023-5-12
Entropy (Basel). 2023-4-28