Yang Guang, Liu Yinbo, Wen Sijian, Chen Wenxi, Zhu Xiaolei, Wang Yongmei
School of Information and Artificial Intelligence, Anhui Agricultural University, Changjiang West Road, Hefei, 230036, Anhui, China.
BMC Bioinformatics. 2025 Jan 13;26(1):11. doi: 10.1186/s12859-024-06021-z.
Drug-target interactions (DTIs) are pivotal in drug discovery and development, and their accurate identification can significantly expedite the process. Numerous DTI prediction methods have emerged, yet many fail to fully harness the feature information of drugs and targets or address the issue of feature redundancy. We aim to refine DTI prediction accuracy by eliminating redundant features and capitalizing on the node topological structure to enhance feature extraction. To achieve this, we introduce a PCA-augmented multi-layer heterogeneous graph-based network that concentrates on key features throughout the encoding-decoding phase. Our approach initiates with the construction of a heterogeneous graph from various similarity metrics, which is then encoded via a graph neural network. We concatenate and integrate the resultant representation vectors to merge multi-level information. Subsequently, principal component analysis is applied to distill the most informative features, with the random forest algorithm employed for the final decoding of the integrated data. Our method outperforms six baseline models in terms of accuracy, as demonstrated by extensive experimentation. Comprehensive ablation studies, visualization of results, and in-depth case analyses further validate our framework's efficacy and interpretability, providing a novel tool for drug discovery that integrates multimodal features.
药物-靶点相互作用(DTIs)在药物发现和开发中至关重要,准确识别它们可以显著加快这一进程。众多DTI预测方法已经出现,但许多方法未能充分利用药物和靶点的特征信息,也未能解决特征冗余问题。我们旨在通过消除冗余特征并利用节点拓扑结构来增强特征提取,从而提高DTI预测的准确性。为实现这一目标,我们引入了一种基于主成分分析增强的多层异构图网络,该网络在整个编码-解码阶段专注于关键特征。我们的方法首先从各种相似性度量构建异构图,然后通过图神经网络进行编码。我们将得到的表示向量连接并整合起来,以融合多级信息。随后,应用主成分分析来提取最具信息性的特征,并使用随机森林算法对整合后的数据进行最终解码。大量实验表明,我们的方法在准确性方面优于六个基线模型。全面的消融研究、结果可视化和深入的案例分析进一步验证了我们框架的有效性和可解释性,为整合多模态特征的药物发现提供了一种新颖的工具。