Aikawa Shimpei, Inokuma Kentaro, Wakai Satoshi, Sasaki Kengo, Ogino Chiaki, Chang Jo-Shu, Hasunuma Tomohisa, Kondo Akihiko
1Graduate School of Science, Technology, and Innovation, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501 Japan.
2Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 3-5 Sanbancho, Chiyoda-ku, Tokyo, 102-0075 Japan.
Biotechnol Biofuels. 2018 Feb 27;11:50. doi: 10.1186/s13068-018-1050-y. eCollection 2018.
The cyanobacterium shows promise as a carbohydrate feedstock for biofuel production. The glycogen accumulated in can be extracted by lysozyme-degrading the peptidoglycan layer of the bacterial cell walls. The extracted glycogen can be converted to ethanol through hydrolysis by amylolytic enzymes and fermentation by the yeast . Thus, in the presence of lysozyme, a recombinant yeast expressing α-amylase and glucoamylase can convert directly to ethanol, which would simplify the procedure for ethanol production. However, the ethanol titer and productivity in this process are lower than in ethanol production from cyanobacteria and green algae in previous reports.
To increase the ethanol titer, a high concentration of biomass was employed as the carbon source for the ethanol production using a recombinant amylase-expressing yeast. The addition of lysozyme to the fermentation medium increased the ethanol titer, but not the ethanol productivity. The addition of CaCl increased both the ethanol titer and productivity by causing the delamination of polysaccharide layer on the cell surface of . In the presence of lysozyme and CaCl, ethanol titer, yield, and productivity improved to 48 g L, 93% of theoretical yield, and 1.0 g L h from , corresponding to 90 g L of glycogen.
We developed an ethanol conversion process using a recombinant amylase-expressing yeast from with a high titer, yield, and productivity by adding both lysozyme and CaCl. The direct and highly productive conversion process from via yeast fermentation could be applied to multiple industrial bulk chemicals.
蓝藻作为生物燃料生产的碳水化合物原料具有潜力。蓝藻中积累的糖原可通过溶菌酶降解细菌细胞壁的肽聚糖层来提取。提取的糖原可通过淀粉酶水解和酵母发酵转化为乙醇。因此,在溶菌酶存在的情况下,表达α-淀粉酶和葡糖淀粉酶的重组酵母可将蓝藻直接转化为乙醇,这将简化乙醇生产过程。然而,该过程中的乙醇滴度和生产率低于先前报道的蓝藻和绿藻乙醇生产。
为了提高乙醇滴度,使用表达淀粉酶的重组酵母,采用高浓度的蓝藻生物质作为乙醇生产的碳源。向发酵培养基中添加溶菌酶可提高乙醇滴度,但不能提高乙醇生产率。添加氯化钙通过导致蓝藻细胞表面多糖层的分层,提高了乙醇滴度和生产率。在溶菌酶和氯化钙存在的情况下,乙醇滴度、产率和生产率从蓝藻对应的90 g/L糖原提高到48 g/L、理论产率的93%和1.0 g/L·h。
我们通过添加溶菌酶和氯化钙,开发了一种使用表达淀粉酶的重组酵母从蓝藻高效转化乙醇的工艺,该工艺具有高滴度、高产率和高生产率。通过酵母发酵从蓝藻直接高效转化的过程可应用于多种工业大宗化学品。