Pérez-Gandía Carmen, García-Sáez Gema, Subías David, Rodríguez-Herrero Agustín, Gómez Enrique J, Rigla Mercedes, Hernando M Elena
1 CIBER-BBN: Networking Research Centre for Bioengineering, Biomaterials and Nanomedicine, Madrid, Spain.
2 Centro de Tecnología Biomédica, ETSI de Telecomunicación, Universidad Politécnica de Madrid, Spain.
J Diabetes Sci Technol. 2018 Mar;12(2):243-250. doi: 10.1177/1932296818761457.
In type 1 diabetes mellitus (T1DM), patients play an active role in their own care and need to have the knowledge to adapt decisions to their daily living conditions. Artificial intelligence applications can help people with type 1 diabetes in decision making and allow them to react at time scales shorter than the scheduled face-to-face visits. This work presents a decision support system (DSS), based on glucose prediction, to assist patients in a mobile environment.
The system's impact on therapeutic corrective actions has been evaluated in a randomized crossover pilot study focused on interprandial periods. Twelve people with type 1 diabetes treated with insulin pump participated in two phases: In the experimental phase (EP) patients used the DSS to modify initial corrective decisions in presence of hypoglycemia or hyperglycemia events. In the control phase (CP) patients were asked to follow decisions without knowing the glucose prediction. A telemedicine platform allowed participants to register monitoring data and decisions and allowed endocrinologists to supervise data at the hospital. The study period was defined as a postprediction (PP) time window.
After knowing the glucose prediction, participants modified the initial decision in 20% of the situations. No statistically significant differences were found in the PP Kovatchev's risk index change (-1.23 ± 11.85 in EP vs -0.56 ± 6.06 in CP). Participants had a positive opinion about the DSS with an average score higher than 7 in a usability questionnaire.
The DSS had a relevant impact in the participants' decision making while dealing with T1DM and showed a high confidence of patients in the use of glucose prediction.
在1型糖尿病(T1DM)中,患者在自身护理中发挥着积极作用,需要具备根据日常生活状况调整决策的知识。人工智能应用可以帮助1型糖尿病患者进行决策,并使他们能够在比预定面对面就诊更短的时间尺度上做出反应。这项工作提出了一种基于血糖预测的决策支持系统(DSS),以在移动环境中协助患者。
在一项聚焦于餐间时段的随机交叉试点研究中评估了该系统对治疗纠正措施的影响。12名使用胰岛素泵治疗的1型糖尿病患者参与了两个阶段:在实验阶段(EP),患者在出现低血糖或高血糖事件时使用DSS修改初始纠正决策。在对照阶段(CP),要求患者在不知道血糖预测结果的情况下遵循决策。一个远程医疗平台允许参与者记录监测数据和决策,并允许内分泌科医生在医院监督数据。研究期被定义为预测后(PP)时间窗口。
在得知血糖预测结果后,参与者在20%的情况下修改了初始决策。在PP Kovatchev风险指数变化方面未发现统计学上的显著差异(EP组为-1.23±11.85,CP组为-0.56±6.06)。参与者对DSS持积极看法,在可用性问卷中的平均得分高于7分。
该DSS在参与者应对T1DM时的决策中产生了相关影响,并显示出患者对使用血糖预测的高度信心。