Suppr超能文献

糖尿病护理中的决策支持:使用移动血糖预测器支持患者日常生活的挑战。

Decision Support in Diabetes Care: The Challenge of Supporting Patients in Their Daily Living Using a Mobile Glucose Predictor.

作者信息

Pérez-Gandía Carmen, García-Sáez Gema, Subías David, Rodríguez-Herrero Agustín, Gómez Enrique J, Rigla Mercedes, Hernando M Elena

机构信息

1 CIBER-BBN: Networking Research Centre for Bioengineering, Biomaterials and Nanomedicine, Madrid, Spain.

2 Centro de Tecnología Biomédica, ETSI de Telecomunicación, Universidad Politécnica de Madrid, Spain.

出版信息

J Diabetes Sci Technol. 2018 Mar;12(2):243-250. doi: 10.1177/1932296818761457.

Abstract

BACKGROUND

In type 1 diabetes mellitus (T1DM), patients play an active role in their own care and need to have the knowledge to adapt decisions to their daily living conditions. Artificial intelligence applications can help people with type 1 diabetes in decision making and allow them to react at time scales shorter than the scheduled face-to-face visits. This work presents a decision support system (DSS), based on glucose prediction, to assist patients in a mobile environment.

METHODS

The system's impact on therapeutic corrective actions has been evaluated in a randomized crossover pilot study focused on interprandial periods. Twelve people with type 1 diabetes treated with insulin pump participated in two phases: In the experimental phase (EP) patients used the DSS to modify initial corrective decisions in presence of hypoglycemia or hyperglycemia events. In the control phase (CP) patients were asked to follow decisions without knowing the glucose prediction. A telemedicine platform allowed participants to register monitoring data and decisions and allowed endocrinologists to supervise data at the hospital. The study period was defined as a postprediction (PP) time window.

RESULTS

After knowing the glucose prediction, participants modified the initial decision in 20% of the situations. No statistically significant differences were found in the PP Kovatchev's risk index change (-1.23 ± 11.85 in EP vs -0.56 ± 6.06 in CP). Participants had a positive opinion about the DSS with an average score higher than 7 in a usability questionnaire.

CONCLUSION

The DSS had a relevant impact in the participants' decision making while dealing with T1DM and showed a high confidence of patients in the use of glucose prediction.

摘要

背景

在1型糖尿病(T1DM)中,患者在自身护理中发挥着积极作用,需要具备根据日常生活状况调整决策的知识。人工智能应用可以帮助1型糖尿病患者进行决策,并使他们能够在比预定面对面就诊更短的时间尺度上做出反应。这项工作提出了一种基于血糖预测的决策支持系统(DSS),以在移动环境中协助患者。

方法

在一项聚焦于餐间时段的随机交叉试点研究中评估了该系统对治疗纠正措施的影响。12名使用胰岛素泵治疗的1型糖尿病患者参与了两个阶段:在实验阶段(EP),患者在出现低血糖或高血糖事件时使用DSS修改初始纠正决策。在对照阶段(CP),要求患者在不知道血糖预测结果的情况下遵循决策。一个远程医疗平台允许参与者记录监测数据和决策,并允许内分泌科医生在医院监督数据。研究期被定义为预测后(PP)时间窗口。

结果

在得知血糖预测结果后,参与者在20%的情况下修改了初始决策。在PP Kovatchev风险指数变化方面未发现统计学上的显著差异(EP组为-1.23±11.85,CP组为-0.56±6.06)。参与者对DSS持积极看法,在可用性问卷中的平均得分高于7分。

结论

该DSS在参与者应对T1DM时的决策中产生了相关影响,并显示出患者对使用血糖预测的高度信心。

相似文献

3
Gestational Diabetes Management Using Smart Mobile Telemedicine.
J Diabetes Sci Technol. 2018 Mar;12(2):260-264. doi: 10.1177/1932296817704442. Epub 2017 Apr 18.
7
Digital Diabetes Management Application Improves Glycemic Outcomes in People With Type 1 and Type 2 Diabetes.
J Diabetes Sci Technol. 2018 May;12(3):701-708. doi: 10.1177/1932296817747291. Epub 2017 Dec 25.
9
2 month evening and night closed-loop glucose control in patients with type 1 diabetes under free-living conditions: a randomised crossover trial.
Lancet Diabetes Endocrinol. 2015 Dec;3(12):939-47. doi: 10.1016/S2213-8587(15)00335-6. Epub 2015 Sep 30.
10
Assessment of a personalized and distributed patient guidance system.
Int J Med Inform. 2017 May;101:108-130. doi: 10.1016/j.ijmedinf.2017.02.010. Epub 2017 Feb 21.

引用本文的文献

1
AI Applications for Chronic Condition Self-Management: Scoping Review.
J Med Internet Res. 2025 Apr 8;27:e59632. doi: 10.2196/59632.
2
Applications of Clinical Decision Support Systems in Diabetes Care: Scoping Review.
J Med Internet Res. 2023 Dec 8;25:e51024. doi: 10.2196/51024.
5
Personalized Mobile Health for Elderly Home Care: A Systematic Review of Benefits and Challenges.
Int J Telemed Appl. 2023 Jan 16;2023:5390712. doi: 10.1155/2023/5390712. eCollection 2023.
6
HYPO-CHEAT's aggregated weekly visualisations of risk reduce real world hypoglycaemia.
Digit Health. 2022 Oct 17;8:20552076221129712. doi: 10.1177/20552076221129712. eCollection 2022 Jan-Dec.
8
Diabetes Technology Meeting 2020.
J Diabetes Sci Technol. 2021 Jul;15(4):916-960. doi: 10.1177/19322968211016480.
9
Hypoglycaemia detection and prediction techniques: A systematic review on the latest developments.
Diabetes Metab Res Rev. 2021 Oct;37(7):e3449. doi: 10.1002/dmrr.3449. Epub 2021 Mar 24.
10
Machine Learning Techniques for Hypoglycemia Prediction: Trends and Challenges.
Sensors (Basel). 2021 Jan 14;21(2):546. doi: 10.3390/s21020546.

本文引用的文献

1
4. Lifestyle Management: .
Diabetes Care. 2018 Jan;41(Suppl 1):S38-S50. doi: 10.2337/dc18-S004.
2
Temporal case-based reasoning for type 1 diabetes mellitus bolus insulin decision support.
Artif Intell Med. 2018 Apr;85:28-42. doi: 10.1016/j.artmed.2017.09.007. Epub 2017 Oct 3.
3
Artificial Intelligence Methodologies and Their Application to Diabetes.
J Diabetes Sci Technol. 2018 Mar;12(2):303-310. doi: 10.1177/1932296817710475. Epub 2017 May 25.
4
A web-based clinical decision support system for gestational diabetes: Automatic diet prescription and detection of insulin needs.
Int J Med Inform. 2017 Jun;102:35-49. doi: 10.1016/j.ijmedinf.2017.02.014. Epub 2017 Mar 6.
5
Assessment of a personalized and distributed patient guidance system.
Int J Med Inform. 2017 May;101:108-130. doi: 10.1016/j.ijmedinf.2017.02.010. Epub 2017 Feb 21.
6
A review of personalized blood glucose prediction strategies for T1DM patients.
Int J Numer Method Biomed Eng. 2017 Jun;33(6). doi: 10.1002/cnm.2833. Epub 2016 Oct 28.
7
An Advanced Bolus Calculator for Type 1 Diabetes: System Architecture and Usability Results.
IEEE J Biomed Health Inform. 2016 Jan;20(1):11-7. doi: 10.1109/JBHI.2015.2464088. Epub 2015 Aug 3.
10
Effectiveness of sensor-augmented insulin-pump therapy in type 1 diabetes.
N Engl J Med. 2010 Jul 22;363(4):311-20. doi: 10.1056/NEJMoa1002853. Epub 2010 Jun 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验