Suppr超能文献

Ionic wave propagation and collision in an excitable circuit model of microtubules.

作者信息

Guemkam Ghomsi P, Tameh Berinyoh J T, Moukam Kakmeni F M

机构信息

Complex Systems and Theoretical Biology Group (CoSTBiG), Laboratory of Research on Advanced Materials and Non-linear Science(LaRAMaNS), Department of Physics, Faculty of Science, University of Buea, P. O. Box 63, Buea, Cameroon.

出版信息

Chaos. 2018 Feb;28(2):023106. doi: 10.1063/1.5001066.

Abstract

In this paper, we report the propensity to excitability of the internal structure of cellular microtubules, modelled as a relatively large one-dimensional spatial array of electrical units with nonlinear resistive features. We propose a model mimicking the dynamics of a large set of such intracellular dynamical entities as an excitable medium. We show that the behavior of such lattices can be described by a complex Ginzburg-Landau equation, which admits several wave solutions, including the plane waves paradigm. A stability analysis of the plane waves solutions of our dynamical system is conducted both analytically and numerically. It is observed that perturbed plane waves will always evolve toward promoting the generation of localized periodic waves trains. These modes include both stationary and travelling spatial excitations. They encompass, on one hand, localized structures such as solitary waves embracing bright solitons, dark solitons, and bisolitonic impulses with head-on collisions phenomena, and on the other hand, the appearance of both spatially homogeneous and spatially inhomogeneous stationary patterns. This ability exhibited by our array of proteinic elements to display several states of excitability exposes their stunning biological and physical complexity and is of high relevance in the description of the developmental and informative processes occurring on the subcellular scale.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验