Suppr超能文献

甲虫的跳跃机制与性能。II. 象鼻虫(鞘翅目:象甲科:Rhamphini族)

Jumping mechanisms and performance in beetles. II. Weevils (Coleoptera: Curculionidae: Rhamphini).

作者信息

Nadein Konstantin, Betz Oliver

机构信息

Senckenberg German Entomological Institute, Eberswalder Str. 90, 15374, Müncheberg, Germany.

Evolutionary Biology of Invertebrates, Institute of Evolution and Ecology, Eberhard Karls University of Tübingen, Auf der Morgenstelle 28E, 72076, Tübingen, Germany.

出版信息

Arthropod Struct Dev. 2018 Mar;47(2):131-143. doi: 10.1016/j.asd.2018.02.006. Epub 2018 Mar 6.

Abstract

We describe the kinematics and performance of the natural jump in the weevil Orchestes fagi (Fabricius, 1801) (Coleoptera: Curculionidae) and its jumping apparatus with underlying anatomy and functional morphology. In weevils, jumping is performed by the hind legs and involves the extension of the hind tibia. The principal structural elements of the jumping apparatus are (1) the femoro-tibial joint, (2) the metafemoral extensor tendon, (3) the extensor ligament, (4) the flexor ligament, (5) the tibial flexor sclerite and (6) the extensor and flexor muscles. The kinematic parameters of the jump (from minimum to maximum) are 530-1965 m s (acceleration), 0.7-2.0 m s (velocity), 1.5-3.0 ms (time to take-off), 0.3-4.4 μJ (kinetic energy) and 54-200 (g-force). The specific joint power as calculated for the femoro-tibial joint during the jumping movement is 0.97 W g. The full extension of the hind tibia during the jump was reached within up to 1.8-2.5 ms. The kinematic parameters, the specific joint power and the time for the full extension of the hind tibia suggest that the jump is performed via a catapult mechanism with an input of elastic strain energy. A resilin-bearing elastic extensor ligament that connects the extensor tendon and the tibial base is considered to be the structure that accumulates the elastic strain energy for the jump. According to our functional model, the extensor ligament is loaded by the contraction of the extensor muscle, while the co-contraction of the antagonistic extensor and flexor muscles prevents the early extension of the tibia. This is attributable to the leverage factors of the femoro-tibial joint providing a mechanical advantage for the flexor muscles over the extensor muscles in the fully flexed position. The release of the accumulated energy is performed by the rapid relaxation of the flexor muscles resulting in the fast extension of the hind tibia propelling the body into air.

摘要

我们描述了象甲Orchestes fagi(Fabricius,1801年)(鞘翅目:象甲科)自然跳跃的运动学和性能,以及其跳跃装置的相关基础解剖结构和功能形态。在象甲中,跳跃由后腿完成,涉及后胫节的伸展。跳跃装置的主要结构元件包括:(1)股胫关节;(2)股节伸肌腱;(3)伸韧带;(4)屈韧带;(5)胫节屈骨片;(6)伸肌和屈肌。跳跃的运动学参数(从最小值到最大值)为:530 - 1965米/秒²(加速度)、0.7 - 2.0米/秒(速度)、1.5 - 3.0毫秒(起飞时间)、0.3 - 4.4微焦(动能)以及54 - 200(重力加速度)。跳跃运动过程中计算得出的股胫关节的特定关节功率为0.97瓦/克。跳跃过程中后胫节的完全伸展在1.8 - 2.5毫秒内完成。运动学参数、特定关节功率以及后胫节完全伸展的时间表明,跳跃是通过弹射机制进行的,输入了弹性应变能。连接伸肌腱和胫节基部的含 resilin 的弹性伸韧带被认为是为跳跃积累弹性应变能的结构。根据我们的功能模型,伸韧带通过伸肌的收缩加载,而拮抗的伸肌和屈肌的共同收缩可防止胫节过早伸展。这归因于股胫关节的杠杆因素,在完全屈曲位置为屈肌提供了相对于伸肌的机械优势。积累能量的释放是通过屈肌的快速放松实现的,导致后胫节快速伸展,将身体推进空中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验