Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan.
Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan
Appl Environ Microbiol. 2018 Apr 16;84(9). doi: 10.1128/AEM.00258-18. Print 2018 May 1.
1,8-Dihydroxynaphthalene (1,8-DHN) is a key intermediate in the biosynthesis of DHN melanin, which is specific to fungi. In this study, we characterized the enzymatic properties of the gene products of an operon consisting of , , and from the Gram-negative bacterium Heterologous expression of , , and in caused secretion of a dark-brown pigment into the broth. High-performance liquid chromatography (HPLC) analysis of the broth revealed that the recombinant strain produced 1,8-DHN, indicating that the operon encoded a novel enzymatic system for the synthesis of 1,8-DHN. Simultaneous incubation of the recombinant SoceCHS1, BdsA, and BdsB with malonyl-coenzyme A (malonyl-CoA) and NADPH resulted in the synthesis of 1,8-DHN. SoceCHS1, a type III polyketide synthase (PKS), catalyzed the synthesis of 1,3,6,8-tetrahydroxynaphthalene (THN) THN was in turn converted to 1,8-DHN by successive steps of reduction and dehydration, which were catalyzed by BdsA and BdsB. BdsA, which is a member of the aldo-keto reductase (AKR) superfamily, catalyzed the reduction of THN and 1,3,8-tetrahydroxynaphthalene (THN) to scytalone and vermelone, respectively. The stereoselectivity of THN reduction by BdsA occurred on the -face to give ()-scytalone with more than 99% optical purity. BdsB, a SnoaL2-like protein, catalyzed the dehydration of scytalone and vermelone to THN and 1,8-DHN, respectively. The fungal pathway for the synthesis of 1,8-DHN is composed of a type I PKS, naphthol reductases of the short-chain dehydrogenase/reductase (SDR) superfamily, and scytalone dehydratase (SD). These findings demonstrated 1,8-DHN synthesis by novel enzymes of bacterial origin. Although the DHN biosynthetic pathway was thought to be specific to fungi, we discovered novel DHN synthesis enzymes of bacterial origin. The biosynthesis of bacterial DHN utilized a type III PKS for polyketide synthesis, an AKR superfamily for reduction, and a SnoaL2-like NTF2 superfamily for dehydration, whereas the biosynthesis of fungal DHN utilized a type I PKS, SDR superfamily enzyme, and SD-like NTF2 superfamily. Surprisingly, the enzyme systems comprising the pathway were significantly different from each other, suggesting independent, parallel evolution leading to the same biosynthesis. DHN melanin plays roles in host invasion and adaptation to stress in pathogenic fungi and is therefore important to study. However, it is unclear whether DHN biosynthesis occurs in bacteria. Importantly, we did find that bacterial DHN biosynthetic enzymes were conserved among pathogenic bacteria.
1,8-二羟基萘(1,8-DHN)是 DHN 黑色素生物合成的关键中间体,DHN 黑色素是真菌特有的。在这项研究中,我们从革兰氏阴性菌 中鉴定了由 、 和 组成的操纵子的基因产物的酶学特性。 在 中异源表达 、 和 导致深褐色色素分泌到肉汤中。高效液相色谱(HPLC)分析表明,重组菌产生了 1,8-DHN,表明该操纵子编码了一种用于合成 1,8-DHN 的新型酶系统。同时孵育重组 SoceCHS1、BdsA 和 BdsB 与丙二酰辅酶 A(丙二酰-CoA)和 NADPH,导致 1,8-DHN 的合成。SoceCHS1 是一种 III 型聚酮合酶(PKS),催化 1,3,6,8-四羟基萘(THN)的合成。THN 随后通过 BdsA 和 BdsB 催化的还原和脱水步骤转化为 1,8-DHN。BdsA 是醛酮还原酶(AKR)超家族的成员,催化 THN 和 1,3,8-四羟基萘(THN)分别还原为 scytalone 和 vermelone。BdsA 催化 THN 还原的立体选择性发生在 -面,以大于 99%的光学纯度得到()-scytalone。BdsB 是 SnoaL2 样蛋白,催化 scytalone 和 vermelone 分别脱水生成 THN 和 1,8-DHN。真菌 1,8-DHN 合成途径由 I 型 PKS、短链脱氢酶/还原酶(SDR)超家族的萘酚还原酶和 scytalone 脱水酶(SD)组成。这些发现证明了细菌来源的新型酶参与了 1,8-DHN 的合成。尽管 DHN 生物合成途径被认为是真菌特有的,但我们发现了细菌来源的新型 DHN 合成酶。细菌 DHN 的生物合成利用 III 型 PKS 进行聚酮合成、AKR 超家族进行还原和 SnoaL2 样 NTF2 超家族进行脱水,而真菌 DHN 的生物合成利用 I 型 PKS、SDR 超家族酶和 SD 样 NTF2 超家族。令人惊讶的是,该途径的酶系统彼此明显不同,表明导致相同生物合成的独立、平行进化。DHN 黑色素在致病真菌的宿主入侵和应激适应中发挥作用,因此对其进行研究非常重要。然而,目前尚不清楚细菌中是否存在 DHN 生物合成。重要的是,我们确实发现了细菌 DHN 生物合成酶在致病性细菌中是保守的。