State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China; Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350004, China.
State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
Talanta. 2018 May 15;182:544-548. doi: 10.1016/j.talanta.2018.02.028. Epub 2018 Feb 9.
For study of the photocatalytic reaction kinetics in a confined microsystem, a photocatalysis microreactor integrated on a microfluidic device has been fabricated using an on-line UV/vis detector. The performance of the photocatalysis microreactor is evaluated by the photocatalytic degradation of Rhodamine B chosen as model target by using commercial titanium dioxide (Degussa P25, TiO) nanoparticles as a photocatalyst. Results show that the photocatalytic reaction occurs via the Langmuir-Hinshelwood mechanism and the photocatalysis kinetics in the confined microsystem (r = 0.359 min) is about 10 times larger than that in macrosystem (r = 0.033 min). In addition, the photocatalysis activity of the immobilized TiO nanoparticles in the microreactor exhibits good stability under flowing conditions. The present microchip device offers an interesting platform for screening of photocatalysts and exploration of photocatalysis mechanisms and kinetics.
为了研究受限微系统中的光催化反应动力学,使用在线 UV/vis 检测器,制造了集成在微流控装置上的光催化微反应器。通过使用商业二氧化钛(Degussa P25,TiO)纳米颗粒作为光催化剂对罗丹明 B 的光催化降解来评估光催化微反应器的性能,罗丹明 B 被选为模型目标。结果表明,光催化反应通过 Langmuir-Hinshelwood 机制发生,受限微系统中的光催化动力学(r=0.359 min)大约是宏观系统(r=0.033 min)的 10 倍。此外,在流动条件下,固定在微反应器中的 TiO 纳米颗粒的光催化活性表现出良好的稳定性。本微芯片装置为筛选光催化剂以及探索光催化机制和动力学提供了一个有趣的平台。