Nugroho Robertus Wahyu N, Odelius Karin, Höglund Anders, Albertsson Ann-Christine
Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
Chem Mater. 2016 May 24;28(10):3298-3307. doi: 10.1021/acs.chemmater.6b00133. Epub 2016 Apr 28.
A combined surface treatment (i.e., surface grafting and a layer-by-layer (LbL) approach) is presented to create advanced biomaterials, i.e., 3D poly(l-lactide) (PLLA) microsphere scaffolds, at room temperature. The grafted surface plays a crucial role in assembling polyelectrolyte multilayers (PEMs) onto the surface of the microspheres, thus improving the physicochemical properties of the 3D microsphere scaffolds. The grafted surface of the PLLA microspheres demonstrates much better PEM adsorption, improved surface coverage at low pH, and smoother surfaces at high pH compared with those of nongrafted surfaces of PLLA microspheres during the assembly of PEMs. They induce more swelling than nongrafted surfaces after the assembly of the PEMs and exhibit blue emission after functionalization of the microsphere surface with a fluorescent dye molecule. The 3D scaffolds functionalized with and without nanosheets not only exhibit good mechanical performance similar to the compressive modulus of cancellous bone but also exhibit the porosity required for cancellous bone regeneration. The magnetic nanoparticle-functionalized 3D scaffolds result in an electrical conductivity in the high range of semiconducting materials (i.e., 1-250 S cm). Thus, these 3D microsphere scaffolds fabricated by surface grafting and the LbL approach are promising candidates for bone tissue engineering.
本文提出了一种联合表面处理方法(即表面接枝和层层组装法),用于在室温下制备先进的生物材料,即三维聚左旋乳酸(PLLA)微球支架。接枝表面在将聚电解质多层膜(PEMs)组装到微球表面的过程中起着关键作用,从而改善了三维微球支架的物理化学性质。在PEMs组装过程中,与未接枝的PLLA微球表面相比,PLLA微球的接枝表面表现出更好的PEM吸附性能、在低pH值下更高的表面覆盖率以及在高pH值下更光滑的表面。在组装PEMs后,它们比未接枝的表面诱导更多的溶胀,并且在用荧光染料分子对微球表面进行功能化后呈现蓝色发射。用纳米片功能化和未功能化的三维支架不仅表现出与松质骨压缩模量相似的良好力学性能,而且还表现出松质骨再生所需的孔隙率。磁性纳米粒子功能化的三维支架在半导体材料的高电导率范围内(即1 - 250 S cm)产生电导率。因此,通过表面接枝和层层组装法制备的这些三维微球支架是骨组织工程中有前景的候选材料。