Takayanagi Toshiyuki, Nakatomi Taiki
Department of Chemistry, Saitama University, Shimo-Okubo 255, Sakura-Ku, Saitama City, Saitama, 338-8570, Japan.
J Comput Chem. 2018 Jul 15;39(19):1319-1326. doi: 10.1002/jcc.25202. Epub 2018 Mar 5.
Many catalytic and biomolecular reactions containing transition metals involve changes in the electronic spin state. These processes are referred to as "spin-forbidden" reactions within nonrelativistic quantum mechanics framework. To understand detailed reaction mechanisms of spin-forbidden reactions, one must characterize reaction pathways on potential energy surfaces with different spin states and then identify crossing points. Here we propose a practical computational scheme, where only the lowest mixed-spin eigenstate obtained from the diagonalization of the spin-coupled Hamiltonian matrix is used in reaction path search calculations. We applied this method to the FeO + H → Fe + H O, FeO + CH → Fe + CH OH, and Mn + OCS → MnS + CO reactions, for which crossings between the different spin states are known to play essential roles in the overall reaction kinetics. © 2018 Wiley Periodicals, Inc.
许多包含过渡金属的催化反应和生物分子反应都涉及电子自旋态的变化。在非相对论量子力学框架内,这些过程被称为“自旋禁阻”反应。为了理解自旋禁阻反应的详细反应机理,必须表征具有不同自旋态的势能面上的反应路径,然后确定交叉点。在此,我们提出一种实用的计算方案,即在反应路径搜索计算中仅使用从自旋耦合哈密顿矩阵对角化得到的最低混合自旋本征态。我们将此方法应用于FeO + H → Fe + H₂O、FeO + CH₄ → Fe + CH₃OH和Mn + OCS → MnS + CO反应,已知不同自旋态之间的交叉在整体反应动力学中起着至关重要的作用。© 2018威利期刊公司。