Suppr超能文献

利用组合对预测异源二聚体蛋白复合物进行改进,使用成对核函数。

Improving prediction of heterodimeric protein complexes using combination with pairwise kernel.

机构信息

Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan.

Department of Electrical Engineering and Computer Science, National Institute of Technology, Matsue College, 14-4, Nishiikumacho, Matsue, 690-8518, Japan.

出版信息

BMC Bioinformatics. 2018 Feb 19;19(Suppl 1):39. doi: 10.1186/s12859-018-2017-5.

Abstract

BACKGROUND

Since many proteins become functional only after they interact with their partner proteins and form protein complexes, it is essential to identify the sets of proteins that form complexes. Therefore, several computational methods have been proposed to predict complexes from the topology and structure of experimental protein-protein interaction (PPI) network. These methods work well to predict complexes involving at least three proteins, but generally fail at identifying complexes involving only two different proteins, called heterodimeric complexes or heterodimers. There is however an urgent need for efficient methods to predict heterodimers, since the majority of known protein complexes are precisely heterodimers.

RESULTS

In this paper, we use three promising kernel functions, Min kernel and two pairwise kernels, which are Metric Learning Pairwise Kernel (MLPK) and Tensor Product Pairwise Kernel (TPPK). We also consider the normalization forms of Min kernel. Then, we combine Min kernel or its normalization form and one of the pairwise kernels by plugging. We applied kernels based on PPI, domain, phylogenetic profile, and subcellular localization properties to predicting heterodimers. Then, we evaluate our method by employing C-Support Vector Classification (C-SVC), carrying out 10-fold cross-validation, and calculating the average F-measures. The results suggest that the combination of normalized-Min-kernel and MLPK leads to the best F-measure and improved the performance of our previous work, which had been the best existing method so far.

CONCLUSIONS

We propose new methods to predict heterodimers, using a machine learning-based approach. We train a support vector machine (SVM) to discriminate interacting vs non-interacting protein pairs, based on informations extracted from PPI, domain, phylogenetic profiles and subcellular localization. We evaluate in detail new kernel functions to encode these data, and report prediction performance that outperforms the state-of-the-art.

摘要

背景

由于许多蛋白质只有在与它们的伴侣蛋白质相互作用并形成蛋白质复合物后才具有功能,因此识别形成复合物的蛋白质组是至关重要的。因此,已经提出了几种计算方法来根据实验蛋白质-蛋白质相互作用(PPI)网络的拓扑结构和结构来预测复合物。这些方法在预测涉及至少三种蛋白质的复合物时效果很好,但通常无法识别仅涉及两种不同蛋白质的复合物,称为异二聚体复合物或异二聚体。然而,迫切需要有效的方法来预测异二聚体,因为大多数已知的蛋白质复合物正是异二聚体。

结果

在本文中,我们使用了三种有前途的核函数,Min 核和两种成对核函数,即度量学习成对核函数(MLPK)和张量积成对核函数(TPPK)。我们还考虑了 Min 核的归一化形式。然后,我们通过插入将 Min 核或其归一化形式与一个成对核函数组合在一起。我们基于 PPI、结构域、系统发生谱和亚细胞定位特性应用核函数来预测异二聚体。然后,我们通过使用 C-支持向量分类器(C-SVC)、进行 10 折交叉验证并计算平均 F 度量来评估我们的方法。结果表明,归一化-Min 核与 MLPK 的组合导致最佳 F 度量,并提高了我们之前的工作的性能,这是迄今为止最好的现有方法。

结论

我们提出了使用基于机器学习的方法预测异二聚体的新方法。我们基于从 PPI、结构域、系统发生谱和亚细胞定位中提取的信息,使用支持向量机(SVM)来区分相互作用和非相互作用的蛋白质对。我们详细评估了新的核函数来编码这些数据,并报告了优于最先进方法的预测性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1b5/5836830/c277d07441f1/12859_2018_2017_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验