Department of Chemistry, University of California, Berkeley, California, USA.
Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California, USA.
Metallomics. 2018 Mar 1;10(3):474-485. doi: 10.1039/c7mt00349h. Epub 2018 Mar 6.
Copper is essential for eukaryotic life, and animals must acquire this nutrient through the diet and distribute it to cells and organelles for proper function of biological targets. Indeed, mutations in the central copper exporter ATP7A contribute to a spectrum of diseases, including Menkes disease, with symptoms ranging from neurodegeneration to lax connective tissue. As such, a better understanding of the fundamental impacts of ATP7A mutations on in vivo copper distributions is of relevance to those affected by these diseases. Here we combine metal imaging and optical imaging techniques at a variety of spatial resolutions to identify tissues and structures with altered copper levels in the Calamity zebrafish model of Menkes disease. Rapid profiling of tissue slices with LA-ICP-MS identified reduced copper levels in the brain, neuroretina, and liver of Menkes fish compared to control specimens. High resolution nanoSIMS imaging of the neuroretina, combined with electron and confocal microscopies, identified the megamitochondria of photoreceptors as loci of copper accumulation in wildtype fish, with lower levels of megamitochondrial copper observed in Calamity zebrafish. Interestingly, this localized copper decrease does not result in impaired photoreceptor development or altered megamitochondrial morphology, suggesting the prioritization of copper at sufficient levels for maintaining essential mitochondrial functions. Together, these data establish the Calamity zebrafish as an optically transparent in vivo model for the study of neural copper misregulation, illuminate a role for the ATP7A copper exporter in trafficking copper to the neuroretina, and highlight the utility of combining multiple imaging techniques for studying metals in whole organism settings with spatial resolution.
铜对于真核生物的生命是必不可少的,动物必须通过饮食获得这种营养物质,并将其分配到细胞和细胞器中,以实现生物靶标的正常功能。事实上,中央铜输出器 ATP7A 的突变导致了一系列疾病,包括 Menkes 病,其症状从神经退行性变到松弛的结缔组织不等。因此,更好地了解 ATP7A 突变对体内铜分布的基本影响,与那些受这些疾病影响的人有关。在这里,我们结合金属成像和光学成像技术,在各种空间分辨率下,确定了 Menkes 病 Calamity 斑马鱼模型中铜水平改变的组织和结构。LA-ICP-MS 对组织切片的快速分析表明,与对照标本相比,Menkes 鱼的大脑、神经视网膜和肝脏中的铜水平降低。对神经视网膜进行高分辨率 nanoSIMS 成像,并结合电子显微镜和共聚焦显微镜,确定野生型鱼的光感受器的巨大线粒体是铜积累的部位,而 Calamity 斑马鱼中的巨大线粒体铜水平较低。有趣的是,这种局部铜的减少并没有导致光感受器发育受损或巨大线粒体形态改变,这表明在维持重要的线粒体功能方面,优先考虑了足够水平的铜。总之,这些数据确立了 Calamity 斑马鱼作为研究神经铜失调的体内光学透明模型,阐明了 ATP7A 铜输出器在将铜运输到神经视网膜中的作用,并强调了结合多种成像技术研究具有空间分辨率的整体生物体内金属的实用性。