Suppr超能文献

T 细胞受体-β V 和 J 基因的使用情况,与特定的 HLA Ⅰ类和Ⅱ类等位基因相结合,与癌症的生存模式相关。

T-cell receptor-β V and J usage, in combination with particular HLA class I and class II alleles, correlates with cancer survival patterns.

机构信息

Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Bd. MDC7, Tampa, FL, 33612, USA.

Research Computing, University of South Florida, Tampa, USA.

出版信息

Cancer Immunol Immunother. 2018 Jun;67(6):885-892. doi: 10.1007/s00262-018-2139-7. Epub 2018 Mar 5.

Abstract

Class I and class II HLA proteins, respectively, have been associated with subsets of V(D)J usage resulting from recombination of the T-cell receptor (TCR) genes. Additionally, particular HLA alleles, in combination with dominant TCR V(D)J recombinations, have been associated with several autoimmune diseases. The recovery of TCR recombination reads from tumor specimen exome files has allowed rapid and extensive assessments of V(D)J usage, likely for cancer resident T-cells, across relatively large cancer datasets. The results from this approach, in this report, have permitted an extensive alignment of TCR-β VDJ usage and HLA class I and II alleles. Results indicate the correlation of both better and worse cancer survival rates with particular TCR-β, V and J usage-HLA allele combinations, with differences in median survival times ranging from 7 to 130 months, depending on the cancer and the specific TCR-β V and J usage/HLA class allele combination.

摘要

I 类和 II 类 HLA 蛋白分别与 T 细胞受体 (TCR) 基因重组产生的 TCR V(D)J 使用亚群相关。此外,特定的 HLA 等位基因与优势 TCR V(D)J 重组相结合,与多种自身免疫性疾病相关。从肿瘤标本外显子组文件中恢复 TCR 重组读取,可以快速广泛地评估相对较大的癌症数据集内的癌症驻留 T 细胞的 V(D)J 使用情况。本报告中的这一方法的结果允许 TCR-β VDJ 使用和 HLA I 类和 II 类等位基因的广泛对齐。结果表明,特定 TCR-β、V 和 J 使用-HLA 等位基因组合与更好和更差的癌症生存率相关,中位生存时间差异从 7 到 130 个月不等,具体取决于癌症和特定的 TCR-β V 和 J 使用/HLA 等位基因组合。

相似文献

引用本文的文献

本文引用的文献

5
Identifying specificity groups in the T cell receptor repertoire.识别T细胞受体库中的特异性组。
Nature. 2017 Jul 6;547(7661):94-98. doi: 10.1038/nature22976. Epub 2017 Jun 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验