Suppr超能文献

电场作用下水-冰转变的相界、成核速率和晶体生长速度:一项模拟研究。

Phase boundaries, nucleation rates and speed of crystal growth of the water-to-ice transition under an electric field: a simulation study.

作者信息

Zaragoza Alberto, Espinosa Jorge R, Ramos Regina, Antonio Cobos José, Luis Aragones Juan, Vega Carlos, Sanz Eduardo, Ramírez Jorge, Valeriani Chantal

机构信息

Departamento de Estructura de la Materia, Fisica Termica y Electronica, Facultad de Ciencias Fisicas, Universidad Complutense de Madrid, 28040 Madrid, Spain. Departamento de Ingenieria Fisica, Division de Ciencias e Ingenierias, Universidad de Guanajuato, Loma del Bosque 103, Col. Lomas del Campestre, CP 37150 Leon, Mexico.

出版信息

J Phys Condens Matter. 2018 May 2;30(17):174002. doi: 10.1088/1361-648X/aab464. Epub 2018 Mar 6.

Abstract

We investigate with computer simulations the effect of applying an electric field on the water-to-ice transition. We use a combination of state-of-the-art simulation techniques to obtain phase boundaries and crystal growth rates (direct coexistence), nucleation rates (seeding) and interfacial free energies (seeding and mold integration). First, we consider ice Ih, the most stable polymorph in the absence of a field. Its normal melting temperature, speed of crystal growth and nucleation rate (for a given supercooling) diminish as the intensity of the field goes up. Then, we study polarised cubic ice, or ice Icf, the most stable solid phase under a strong electric field. Its normal melting point goes up with the field and, for a given supercooling, under the studied field (0.3 V nm) ice Icf nucleates and grows at a similar rate as Ih with no field. The net effect of the field would then be that ice nucleates at warmer temperatures, but in the form of ice Icf. The main conclusion of this work is that reasonable electric fields (not strong enough to break water molecules apart) are not relevant in the context of homogeneous ice nucleation at 1 bar.

摘要

我们通过计算机模拟研究了施加电场对水-冰转变的影响。我们结合了最先进的模拟技术来获得相界和晶体生长速率(直接共存)、成核速率(晶种法)以及界面自由能(晶种法和铸模积分)。首先,我们考虑冰Ih,它是在无电场时最稳定的多晶型物。随着电场强度的增加,其正常熔点、晶体生长速度和成核速率(对于给定的过冷度)都会降低。然后,我们研究极化立方冰,即冰Icf,它是强电场下最稳定的固相。其正常熔点随电场升高,并且在给定的过冷度下,在所研究的电场(0.3 V/nm)下,冰Icf的成核和生长速率与无电场时的冰Ih相似。电场的净效应将是冰在更高的温度下成核,但以冰Icf的形式。这项工作的主要结论是,合理的电场(强度不足以使水分子分解)在1巴的均匀冰核形成背景下并不相关。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验