Suppr超能文献

工作条件下的燃料电池等功能材料体系的常压硬 X 射线光电子能谱

Ambient Pressure Hard X-ray Photoelectron Spectroscopy for Functional Material Systems as Fuel Cells under Working Conditions.

机构信息

Department of Materials Molecular Science , Institute for Molecular Science , Myodaiji-cho, Okazaki , Aichi 444-8585 , Japan.

Innovation Research Center for Fuel Cells , The University of Electro-Communications , Chofugaoka, Chofu , Tokyo 182-8585 , Japan.

出版信息

Acc Chem Res. 2018 Mar 20;51(3):719-727. doi: 10.1021/acs.accounts.7b00563. Epub 2018 Mar 6.

Abstract

Heterogeneous interfaces play important roles in a variety of functional material systems and technologies, such as catalysis, batteries, and devices. A fundamental understanding of efficient functions at interfaces under realistic conditions is crucial for sophisticated designs of useful material systems and novel devices. X-ray photoelectron spectroscopy is one of the most promising and common methods to investigate such material systems. Although X-ray photoelectron spectroscopy is usually conducted under high vacuum because of the requirement of electron detection with the precise measurement of kinetic energies, extensive efforts have been devoted to the measurements in gaseous environments. Very recently, we have succeeded in measuring X-ray photoelectron spectra under real ambient atmosphere (10 Pa), using synchrotron radiation hard X-rays with the photon energy of 8 keV and the windowless electron spectrometer system. In this Account, the novel useful technique of real ambient pressure hard X-ray photoelectron spectroscopy is reviewed. As examples of (near) ambient pressure hard X-ray photoelectron spectroscopy, hydrogen storage of Pd nanoparticles is at first investigated by recording Pd 3d and valence band spectra under hydrogen atmosphere. The Pd 3d and valence band spectra are found to change rather abruptly depending on the hydrogen pressure, demonstrating a behavior like phase transformation. Subsequently, as a main topic in this Account, we describe investigations of the electronic states of platinum nanoparticles on the cathode electrocatalyst in a polymer electrolyte fuel cell (PEFC) under the voltage operating conditions using the near ambient pressure hard X-ray photoelectron spectroscopic system. The Pt 4f and 3d X-ray photoelectron spectra of the cathode Pt/C catalysts clearly show that the oxidized Pt species is at most divalent and the tetravalent Pt species does not exist on the Pt nanoparticles even at the positive cathode-anode voltage of ∼1.4 V. Although the water oxidation reaction may take place at the potential, such a reaction does not lead to a buildup of detectable tetravalent Pt in the PEFC. The voltage-dependent Pt 3d X-ray photoelectron spectra show a clear hysteresis between the voltage increase and decrease processes. The fraction of oxidized Pt species matched the ratio of surface to total Pt atoms in the nanoparticles, which suggests that Pt oxidation occurs as a reaction event at only the first Pt layer of the Pt nanoparticles and the inner Pt atoms do not participate in the reaction practically. The developed technique is a valuable in situ tool for the investigation of the electronic states of PEFCs and other interesting functional material systems and devices under realistic working conditions.

摘要

异质界面在各种功能材料体系和技术中起着重要作用,例如催化、电池和器件。在实际条件下,深入了解界面处的高效功能对于复杂的有用材料体系和新型器件的设计至关重要。X 射线光电子能谱是研究此类材料体系最有前途和最常用的方法之一。尽管由于电子检测的需要,需要在高真空中进行 X 射线光电子能谱,但已经进行了广泛的努力以在气体环境中进行测量。最近,我们成功地使用光子能量为 8keV 的同步辐射硬 X 射线和无窗电子能谱仪系统,在真实环境气氛(10Pa)下测量 X 射线光电子能谱。在本报告中,综述了新型实用的常压硬 X 射线光电子能谱技术。作为(近)常压硬 X 射线光电子能谱的实例,首先通过在氢气气氛下记录 Pd 纳米粒子的 Pd 3d 和价带光谱来研究 Pd 纳米粒子的储氢性能。发现 Pd 3d 和价带光谱随氢气压力的变化相当突然,表现出类似相变的行为。随后,作为本报告的主要内容,我们描述了使用近常压硬 X 射线光电子能谱系统,在聚合物电解质燃料电池(PEFC)的阴极电催化剂中,在电压工作条件下,对铂纳米粒子的电子态的研究。阴极 Pt/C 催化剂的 Pt 4f 和 3d X 射线光电子能谱清楚地表明,即使在正极-负极电压约为 1.4V 的情况下,氧化的 Pt 物种最多为二价,并且四价 Pt 物种不存在于 Pt 纳米粒子上。尽管可能在该电位下发生水氧化反应,但该反应不会导致 PEFC 中可检测的四价 Pt 的积累。电压相关的 Pt 3d X 射线光电子能谱在电压增加和减少过程之间显示出明显的滞后。氧化的 Pt 物种的分数与纳米粒子中表面与总 Pt 原子的比例相匹配,这表明 Pt 氧化仅发生在 Pt 纳米粒子的第一层 Pt 上,内部 Pt 原子实际上不参与反应。所开发的技术是在实际工作条件下研究 PEFC 和其他有趣的功能材料体系和器件的电子态的有价值的原位工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验