用于监测沿海生态系统基本生物多样性变量的卫星传感器要求。
Satellite sensor requirements for monitoring essential biodiversity variables of coastal ecosystems.
机构信息
College of Marine Science, University of South Florida, 140 7th Avenue South, Saint Petersburg, Florida, 33701, USA.
School of Engineering, University of California Merced, 5200 N. Lake Road, Merced, California, 95340, USA.
出版信息
Ecol Appl. 2018 Apr;28(3):749-760. doi: 10.1002/eap.1682. Epub 2018 Mar 6.
The biodiversity and high productivity of coastal terrestrial and aquatic habitats are the foundation for important benefits to human societies around the world. These globally distributed habitats need frequent and broad systematic assessments, but field surveys only cover a small fraction of these areas. Satellite-based sensors can repeatedly record the visible and near-infrared reflectance spectra that contain the absorption, scattering, and fluorescence signatures of functional phytoplankton groups, colored dissolved matter, and particulate matter near the surface ocean, and of biologically structured habitats (floating and emergent vegetation, benthic habitats like coral, seagrass, and algae). These measures can be incorporated into Essential Biodiversity Variables (EBVs), including the distribution, abundance, and traits of groups of species populations, and used to evaluate habitat fragmentation. However, current and planned satellites are not designed to observe the EBVs that change rapidly with extreme tides, salinity, temperatures, storms, pollution, or physical habitat destruction over scales relevant to human activity. Making these observations requires a new generation of satellite sensors able to sample with these combined characteristics: (1) spatial resolution on the order of 30 to 100-m pixels or smaller; (2) spectral resolution on the order of 5 nm in the visible and 10 nm in the short-wave infrared spectrum (or at least two or more bands at 1,030, 1,240, 1,630, 2,125, and/or 2,260 nm) for atmospheric correction and aquatic and vegetation assessments; (3) radiometric quality with signal to noise ratios (SNR) above 800 (relative to signal levels typical of the open ocean), 14-bit digitization, absolute radiometric calibration <2%, relative calibration of 0.2%, polarization sensitivity <1%, high radiometric stability and linearity, and operations designed to minimize sunglint; and (4) temporal resolution of hours to days. We refer to these combined specifications as H4 imaging. Enabling H4 imaging is vital for the conservation and management of global biodiversity and ecosystem services, including food provisioning and water security. An agile satellite in a 3-d repeat low-Earth orbit could sample 30-km swath images of several hundred coastal habitats daily. Nine H4 satellites would provide weekly coverage of global coastal zones. Such satellite constellations are now feasible and are used in various applications.
沿海陆地和水生栖息地的生物多样性和高生产力是为全世界人类社会带来重要利益的基础。这些分布广泛的栖息地需要频繁和广泛的系统评估,但实地调查仅覆盖了这些区域的一小部分。基于卫星的传感器可以重复记录可见光和近红外反射率光谱,这些光谱包含功能浮游植物群、有色溶解物质和近表层海洋中的颗粒物质以及生物结构栖息地(漂浮和突出植被、珊瑚、海草和藻类等底栖栖息地)的吸收、散射和荧光特征。这些测量值可以纳入基本生物多样性变量(Essential Biodiversity Variables,简称 EBVs)中,包括物种群体的分布、丰度和特征,用于评估栖息地破碎化。然而,当前和计划中的卫星并非专为观测随着极端潮汐、盐度、温度、风暴、污染或物理生境破坏而迅速变化的 EBVs 而设计,这些变化的规模与人类活动相关。要进行这些观测,需要新一代的卫星传感器,能够以以下综合特征进行采样:(1)空间分辨率为 30 到 100 米像素或更小;(2)在可见光波段的光谱分辨率为 5nm,在短波红外光谱中的分辨率为 10nm(或者至少有两个或更多波段在 1,030nm、1,240nm、1,630nm、2,125nm 和/或 2,260nm 处),用于大气校正和水和植被评估;(3)辐射质量,信噪比(Signal to Noise Ratio,简称 SNR)高于 800(相对于开阔海洋的典型信号水平),14 位数字化,绝对辐射校准 <2%,相对校准 0.2%,偏振灵敏度 <1%,高辐射稳定性和线性度,以及旨在最小化镜面反射的操作;(4)每小时到每天的时间分辨率。我们将这些综合规格称为 H4 成像。实现 H4 成像对于保护和管理全球生物多样性和生态系统服务至关重要,包括食物供应和水安全。在一个 3 度重复的近地轨道上的敏捷卫星每天可以对几百个沿海栖息地的 30 公里宽的图像进行采样。九颗 H4 卫星将每周覆盖全球沿海地区。这种卫星星座现在是可行的,并在各种应用中得到使用。