在全球范围内构建物种分布和丰度的基本生物多样性变量 (EBVs)。
Building essential biodiversity variables (EBVs) of species distribution and abundance at a global scale.
机构信息
Department Theoretical and Computational Ecology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, P.O. Box 94248, 1090 GE, Amsterdam, The Netherlands.
TEAM Network, Moore Center for Science, Conservation International, 2011 Crystal Dr. Suite 500, Arlington, VA, 22202, U.S.A.
出版信息
Biol Rev Camb Philos Soc. 2018 Feb;93(1):600-625. doi: 10.1111/brv.12359. Epub 2017 Aug 2.
Much biodiversity data is collected worldwide, but it remains challenging to assemble the scattered knowledge for assessing biodiversity status and trends. The concept of Essential Biodiversity Variables (EBVs) was introduced to structure biodiversity monitoring globally, and to harmonize and standardize biodiversity data from disparate sources to capture a minimum set of critical variables required to study, report and manage biodiversity change. Here, we assess the challenges of a 'Big Data' approach to building global EBV data products across taxa and spatiotemporal scales, focusing on species distribution and abundance. The majority of currently available data on species distributions derives from incidentally reported observations or from surveys where presence-only or presence-absence data are sampled repeatedly with standardized protocols. Most abundance data come from opportunistic population counts or from population time series using standardized protocols (e.g. repeated surveys of the same population from single or multiple sites). Enormous complexity exists in integrating these heterogeneous, multi-source data sets across space, time, taxa and different sampling methods. Integration of such data into global EBV data products requires correcting biases introduced by imperfect detection and varying sampling effort, dealing with different spatial resolution and extents, harmonizing measurement units from different data sources or sampling methods, applying statistical tools and models for spatial inter- or extrapolation, and quantifying sources of uncertainty and errors in data and models. To support the development of EBVs by the Group on Earth Observations Biodiversity Observation Network (GEO BON), we identify 11 key workflow steps that will operationalize the process of building EBV data products within and across research infrastructures worldwide. These workflow steps take multiple sequential activities into account, including identification and aggregation of various raw data sources, data quality control, taxonomic name matching and statistical modelling of integrated data. We illustrate these steps with concrete examples from existing citizen science and professional monitoring projects, including eBird, the Tropical Ecology Assessment and Monitoring network, the Living Planet Index and the Baltic Sea zooplankton monitoring. The identified workflow steps are applicable to both terrestrial and aquatic systems and a broad range of spatial, temporal and taxonomic scales. They depend on clear, findable and accessible metadata, and we provide an overview of current data and metadata standards. Several challenges remain to be solved for building global EBV data products: (i) developing tools and models for combining heterogeneous, multi-source data sets and filling data gaps in geographic, temporal and taxonomic coverage, (ii) integrating emerging methods and technologies for data collection such as citizen science, sensor networks, DNA-based techniques and satellite remote sensing, (iii) solving major technical issues related to data product structure, data storage, execution of workflows and the production process/cycle as well as approaching technical interoperability among research infrastructures, (iv) allowing semantic interoperability by developing and adopting standards and tools for capturing consistent data and metadata, and (v) ensuring legal interoperability by endorsing open data or data that are free from restrictions on use, modification and sharing. Addressing these challenges is critical for biodiversity research and for assessing progress towards conservation policy targets and sustainable development goals.
全球范围内收集了大量生物多样性数据,但要综合分散的知识来评估生物多样性状况和趋势仍然具有挑战性。引入基本生物多样性变量 (EBV) 的概念是为了在全球范围内构建生物多样性监测,协调和标准化来自不同来源的生物多样性数据,以获取研究、报告和管理生物多样性变化所需的最小关键变量集。在这里,我们评估了在跨分类群和时空尺度构建全球 EBV 数据产品方面采用“大数据”方法的挑战,重点关注物种分布和丰度。目前关于物种分布的大部分可用数据来自偶然报告的观测或仅存在或存在缺失数据的调查,这些数据是通过标准化协议反复采样获得的。大多数丰度数据来自机会性种群计数或使用标准化协议(例如,从单个或多个站点重复调查同一种群)的种群时间序列。在空间、时间、分类群和不同采样方法上整合这些异构的多源数据集存在巨大的复杂性。将这些数据整合到全球 EBV 数据产品中需要纠正由不完全检测和不同采样工作量引入的偏差,处理不同的空间分辨率和范围,协调来自不同数据源或采样方法的度量单位,应用空间内插或外推的统计工具和模型,并量化数据和模型中的不确定性和误差来源。为了支持地球观测生物多样性观测网络 (GEO BON) 小组制定 EBV,我们确定了 11 个关键工作流程步骤,这些步骤将在全球范围内的研究基础设施内和跨研究基础设施实施 EBV 数据产品的构建过程。这些工作流程步骤考虑了多个连续的活动,包括识别和聚合各种原始数据源、数据质量控制、分类名称匹配以及综合数据的统计建模。我们通过现有的公民科学和专业监测项目(例如 eBird、热带生态评估和监测网络、生命星球指数和波罗的海浮游动物监测)的具体示例来说明这些步骤。确定的工作流程步骤适用于陆地和水生系统以及广泛的空间、时间和分类群尺度。它们取决于清晰、可查找和可访问的元数据,我们提供了当前数据和元数据标准的概述。构建全球 EBV 数据产品仍面临一些挑战:(i) 开发用于组合异构、多源数据集的工具和模型,并填补地理、时间和分类覆盖范围的数据空白,(ii) 整合公民科学、传感器网络、基于 DNA 的技术和卫星遥感等新兴数据收集方法和技术,(iii) 解决与数据产品结构、数据存储、工作流程执行以及生产过程/周期相关的主要技术问题,以及在研究基础设施之间实现技术互操作性,(iv) 通过开发和采用捕获一致数据和元数据的标准和工具来实现语义互操作性,以及 (v) 通过支持开放数据或不受使用、修改和共享限制的数据来确保法律互操作性。解决这些挑战对于生物多样性研究以及评估保护政策目标和可持续发展目标的进展至关重要。