Cell Biology Program, Research Institute, The Hospital for Sick Children , Toronto, Ontario , Canada.
Am J Physiol Endocrinol Metab. 2018 Aug 1;315(2):E204-E217. doi: 10.1152/ajpendo.00008.2018. Epub 2018 Mar 6.
Whereas the blood microvasculature constitutes a biological barrier to the action of blood-borne insulin on target tissues, the lymphatic microvasculature might act as a barrier to subcutaneously administrated insulin reaching the circulation. Here, we evaluate the interaction of insulin with primary microvascular endothelial cells of lymphatic [human dermal lymphatic endothelial cells (HDLEC)] and blood [human adipose microvascular endothelial cells (HAMEC)] origin, derived from human dermal and adipose tissues, respectively. HDLEC express higher levels of insulin receptor and signal in response to insulin as low as 2.5 nM, while HAMEC only activate signaling at 100 nM (a dose that blood vessels do not normally encounter). Low insulin acts specifically through the insulin receptor, while supraphysiological insulin acts through both the IR and insulin growth factor-1 receptor. At supraphysiological or injection site-compatible doses pertinent to lymphatic microvessels, insulin enters HAMEC and HDLEC via fluid-phase endocytosis. Conversely, at physiologically circulating doses (0.2 nM) pertinent to blood microvessels, insulin enters HAMEC through a receptor-mediated process requiring IR autophosphorylation but not downstream insulin signaling. At physiological doses, internalized insulin is barely degraded and is instead released intact to the extracellular medium. In conclusion, we document for the first time the mechanism of interaction of insulin with lymphatic endothelial cells, which may be relevant to insulin absorption during therapeutic injections. Furthermore, we describe distinct action and uptake routes for insulin at physiological and supraphysiological doses in blood microvascular endothelial cells, providing a potential explanation for previously conflicting studies on endothelial insulin uptake.
虽然血液微血管构成了血液胰岛素作用于靶组织的生物学屏障,但淋巴微血管可能会阻止皮下给予的胰岛素进入循环。在这里,我们评估了胰岛素与源自人皮肤和脂肪组织的淋巴[人真皮淋巴管内皮细胞 (HDLEC)]和血液[人脂肪微血管内皮细胞 (HAMEC)]的原发性微血管内皮细胞的相互作用。HDLEC 表达更高水平的胰岛素受体,并对低至 2.5 nM 的胰岛素作出反应,而 HAMEC 仅在 100 nM 时才激活信号(血管通常不会遇到的剂量)。低胰岛素通过胰岛素受体特异性起作用,而超生理胰岛素通过胰岛素受体和胰岛素生长因子-1 受体起作用。在与淋巴微血管相关的超生理或注射部位相容的剂量下,胰岛素通过液相反噬作用进入 HAMEC 和 HDLEC。相反,在与血液微血管相关的生理循环剂量(0.2 nM)下,胰岛素通过需要 IR 自身磷酸化但不需要下游胰岛素信号的受体介导过程进入 HAMEC。在生理剂量下,内化的胰岛素几乎不会降解,而是完整地释放到细胞外介质中。总之,我们首次记录了胰岛素与淋巴管内皮细胞相互作用的机制,这可能与治疗性注射期间的胰岛素吸收有关。此外,我们描述了在血液微血管内皮细胞中,胰岛素在生理和超生理剂量下的不同作用和摄取途径,为先前关于内皮细胞胰岛素摄取的相互矛盾的研究提供了潜在的解释。