Suppr超能文献

杂草风险评估系统的定量不确定性分析。

Quantitative Uncertainty Analysis for a Weed Risk Assessment System.

机构信息

U.S. Department of Agriculture, Plant Protection and Quarantine, Center for Plant Health Science and Technology, Raleigh, NC, USA.

U.S. Department of Agriculture, Plant Protection and Quarantine, Plant Epidemiology and Risk Analysis Laboratory, Raleigh, NC, USA.

出版信息

Risk Anal. 2018 Sep;38(9):1972-1987. doi: 10.1111/risa.12979. Epub 2018 Mar 6.

Abstract

Weed risk assessments (WRA) are used to identify plant invaders before introduction. Unfortunately, very few incorporate uncertainty ratings or evaluate the effects of uncertainty, a fundamental risk component. We developed a probabilistic model to quantitatively evaluate the effects of uncertainty on the outcomes of a question-based WRA tool for the United States. In our tool, the uncertainty of each response is rated as Negligible, Low, Moderate, or High. We developed the model by specifying the likelihood of a response changing for each uncertainty rating. The simulations determine if responses change, select new responses, and sum the scores to determine the risk rating. The simulated scores reveal potential variation in WRA risk ratings. In testing with 204 species assessments, the ranges of simulated risk scores increased with greater uncertainty, and analyses for most species produced simulated risk ratings that differed from the baseline WRA rating. Still, the most frequent simulated rating matched the baseline rating for every High Risk species, and for 87% of all tested species. The remaining 13% primarily involved ambiguous Low Risk results. Changing final ratings based on the uncertainty analysis results was not justified here because accuracy (match between WRA tool and known risk rating) did not improve. Detailed analyses of three species assessments indicate that assessment uncertainty may be best reduced by obtaining evidence for unanswered questions, rather than obtaining additional evidence for questions with responses. This analysis represents an advance in interpreting WRA results, and has enhanced our regulation and management of potential weed species.

摘要

杂草风险评估 (WRA) 用于在引入前识别植物入侵者。不幸的是,很少有评估纳入不确定性评级或评估不确定性的影响,这是一个基本的风险组成部分。我们开发了一个概率模型,用于定量评估基于问题的美国杂草风险评估工具的结果的不确定性的影响。在我们的工具中,每个响应的不确定性被评为可忽略、低、中或高。我们通过指定每个不确定性等级的响应变化的可能性来开发该模型。模拟确定响应是否变化,选择新的响应,并汇总分数以确定风险等级。模拟分数揭示了 WRA 风险等级的潜在变化。在对 204 种物种评估进行测试时,模拟风险评分的范围随着不确定性的增加而增加,并且对大多数物种的分析产生了与基线 WRA 评分不同的模拟风险评分。尽管如此,对于所有高风险物种,以及 87%的所有测试物种,最频繁的模拟评分与基线评分相匹配。其余 13%主要涉及模糊的低风险结果。由于准确性(WRA 工具与已知风险等级之间的匹配)没有提高,因此基于不确定性分析结果更改最终等级在这里是不合理的。对三个物种评估的详细分析表明,通过为未回答的问题获取证据,而不是为有回答的问题获取额外证据,可能是减少评估不确定性的最佳方法。该分析代表了对 WRA 结果进行解释的一个进步,并增强了我们对潜在杂草物种的监管和管理。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验