Suppr超能文献

使用分层抽样方法从长分子动力学轨迹中挑选功能相关的子状态。

Cherry-picking functionally relevant substates from long md trajectories using a stratified sampling approach.

作者信息

Chandramouli Balasubramanian, Mancini Giordano

机构信息

Scuola Normale Superiore di Pisa, Pisa (Italy) Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Pisa, Pisa (Italy).

出版信息

Theor Biol Forum. 2016 Jan 1;109(1-2):49-69. doi: 10.19272/201611402004.

Abstract

Classical Molecular Dynamics (MD) simulations can provide insights at the nanoscopic scale into protein dynamics. Currently, simulations of large proteins and complexes can be routinely carried out in the ns-μs time regime. Clustering of MD trajectories is often performed to identify selective conformations and to compare simulation and experimental data coming from different sources on closely related systems. However, clustering techniques are usually applied without a careful validation of results and benchmark studies involving the application of different algorithms to MD data often deal with relatively small peptides instead of average or large proteins; finally clustering is often applied as a means to analyze refined data and also as a way to simplify further analysis of trajectories. Herein, we propose a strategy to classify MD data while carefully benchmarking the performance of clustering algorithms and internal validation criteria for such methods. We demonstrate the method on two showcase systems with different features, and compare the classification of trajectories in real and PCA space. We posit that the prototype procedure adopted here could be highly fruitful in clustering large trajectories of multiple systems or that resulting especially from enhanced sampling techniques like replica exchange simulations.

摘要

经典分子动力学(MD)模拟能够在纳米尺度上洞察蛋白质动力学。目前,大型蛋白质和复合物的模拟可以在纳秒至微秒的时间尺度上常规进行。MD轨迹的聚类通常用于识别选择性构象,并比较来自密切相关系统的不同来源的模拟数据和实验数据。然而,聚类技术的应用通常没有对结果进行仔细验证,并且涉及将不同算法应用于MD数据的基准研究通常处理的是相对较小的肽,而不是平均大小或大型蛋白质;最后,聚类通常被用作分析精炼数据的一种手段,也是简化轨迹进一步分析的一种方法。在此,我们提出一种对MD数据进行分类的策略,同时仔细评估聚类算法的性能以及此类方法的内部验证标准。我们在两个具有不同特征的展示系统上演示了该方法,并比较了真实空间和主成分分析(PCA)空间中轨迹的分类。我们认为,这里采用的原型程序在对多个系统的大型轨迹进行聚类时可能会非常有效,特别是对于像副本交换模拟这样的增强采样技术所产生的轨迹。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验