Suppr超能文献

群落矩阵与群落中的物种数量

The Community Matrix and the Number of Species in a Community.

作者信息

Vandermeer John H

出版信息

Am Nat. 1970;104(935):73-83. doi: 10.1086/282641.

Abstract

In this paper I am concerned with the number of species that will be held in stable equilibrium in a community of competing organisms, using the general form of the Lotka-Volterra competition equations for m species. Defining K as the saturation density for the ith species and α as the competition coefficient between species i and j, and N as the equilibrium density of species i, the number of species will be determined by N̄, K̄, $$\overline{\alpha}$$ , var (K), the covariances among the α's, and the covariance between α and N. In particular, the number of species increases as K̄ increases but as N̄, $$\overline{\alpha}$$ , cov (α), cov (α,N) and variance of K decrease.

摘要

在本文中,我关注的是在一个由相互竞争的生物体组成的群落中,处于稳定平衡状态的物种数量,采用的是针对(m)个物种的洛特卡 - 沃尔泰拉竞争方程的一般形式。将(K)定义为第(i)个物种的饱和密度,(\alpha)为物种(i)和(j)之间的竞争系数,(N)为物种(i)的平衡密度,物种数量将由(\overline{N})、(\overline{K})、(\overline{\alpha})、(var(K))、(\alpha)之间的协方差以及(\alpha)与(N)之间的协方差决定。特别地,物种数量随着(\overline{K})的增加而增加,但随着(\overline{N})、(\overline{\alpha})、(cov(\alpha))、(cov(\alpha,N))以及(K)的方差的减小而减少。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验