Smithsonian Institution Forest Global Earth Observatory, Smithsonian Environmental Research Center, 647 Contees Wharf Road, Edgewater, MD 21307-0028, USA
Ecology and Evolutionary Biology, Yale University, 165 Prospect Street, New Haven, CT 06511-8934, USA.
Proc Biol Sci. 2018 Mar 14;285(1874). doi: 10.1098/rspb.2017.2050.
As population-level patterns of interest in forests emerge from individual vital rates, modelling forest dynamics requires making the link between the scales at which data are collected (individual stems) and the scales at which questions are asked (e.g. populations and communities). Structured population models (e.g. integral projection models (IPMs)) are useful tools for linking vital rates to population dynamics. However, the application of such models to forest trees remains challenging owing to features of tree life cycles, such as slow growth, long lifespan and lack of data on crucial ontogenic stages. We developed a survival model that accounts for size-dependent mortality and a growth model that characterizes individual heterogeneity. We integrated vital rate models into two types of population model; an analytically tractable form of IPM and an individual-based model (IBM) that is applied with stochastic simulations. We calculated longevities, passage times to, and occupancy time in, different life cycle stages, important metrics for understanding how demographic rates translate into patterns of forest turnover and carbon residence times. Here, we illustrate the methods for three tropical forest species with varying life-forms. Population dynamics from IPMs and IBMs matched a 34 year time series of data (albeit a snapshot of the life cycle for canopy trees) and highlight differences in life-history strategies between species. Specifically, the greater variation in growth rates within the two canopy species suggests an ability to respond to available resources, which in turn manifests as faster passage times and greater occupancy times in larger size classes. The framework presented here offers a novel and accessible approach to modelling the population dynamics of forest trees.
由于人们对森林的兴趣模式是从个体生命率中显现出来的,因此,对森林动态进行建模需要将数据收集的尺度(个体茎干)与问题提出的尺度(例如种群和群落)联系起来。结构人口模型(例如积分预测模型(IPM))是将生命率与种群动态联系起来的有用工具。然而,由于树木生命周期的特征,如生长缓慢、寿命长和缺乏关键发育阶段的数据,这些模型在森林树木中的应用仍然具有挑战性。我们开发了一种生存模型,该模型考虑了与大小相关的死亡率,以及一种生长模型,该模型描述了个体的异质性。我们将生命率模型整合到两种类型的种群模型中;一种是可分析的 IPM 形式,另一种是基于个体的模型(IBM),它是通过随机模拟来应用的。我们计算了不同生命周期阶段的寿命、到达时间和占据时间,这些都是理解人口率如何转化为森林更替和碳居留时间模式的重要指标。在这里,我们用三种具有不同生活形态的热带森林物种来说明这些方法。尽管 IPM 和 IBM 中的种群动态仅代表了树冠树木生命周期的一个瞬间,但它们与 34 年的时间序列数据相匹配,并突出了物种之间在生活史策略上的差异。具体来说,两种树冠物种的生长速率变化更大,这表明它们有能力对可用资源做出反应,这反过来又表现为在更大的尺寸类中更快的通过时间和更大的占据时间。这里提出的框架为模拟森林树木的种群动态提供了一种新颖而易于使用的方法。