From the Departments of Molecular Structural Biology and
General Microbiology, GZMB, Georg-August-University Göttingen, 37077 Göttingen, Germany.
J Biol Chem. 2018 Apr 20;293(16):5781-5792. doi: 10.1074/jbc.RA117.001289. Epub 2018 Mar 7.
Utilization of energy-rich carbon sources such as glucose is fundamental to the evolutionary success of bacteria. Glucose can be catabolized via glycolysis for feeding the intermediary metabolism. The methylglyoxal synthase MgsA produces methylglyoxal from the glycolytic intermediate dihydroxyacetone phosphate. Methylglyoxal is toxic, requiring stringent regulation of MgsA activity. In the Gram-positive bacterium , an interaction with the phosphoprotein Crh controls MgsA activity. In the absence of preferred carbon sources, Crh is present in the nonphosphorylated state and binds to and thereby inhibits MgsA. To better understand the mechanism of regulation of MgsA, here we performed biochemical and structural analyses of MgsA and of its interaction with Crh. Our results indicated that MgsA forms a hexamer ( a trimer of dimers) in the crystal structure, whereas it seems to exist in an equilibrium between a dimer and hexamer in solution. In the hexamer, two alternative dimers could be distinguished, but only one appeared to prevail in solution. Further analysis strongly suggested that the hexamer is the biologically active form. cross-linking studies revealed that Crh interacts with the N-terminal helices of MgsA and that the Crh-MgsA binding inactivates MgsA by distorting and thereby blocking its active site. In summary, our results indicate that dimeric and hexameric MgsA species exist in an equilibrium in solution, that the hexameric species is the active form, and that binding to Crh deforms and blocks the active site in MgsA.
细菌的进化成功依赖于对诸如葡萄糖等富含能量碳源的利用。葡萄糖可通过糖酵解作用代谢为中间代谢物以供营养。甲基乙二醛合酶(MgsA)可将糖酵解中间产物二羟丙酮磷酸转化为甲基乙二醛。由于甲基乙二醛具有毒性,因此需要严格控制 MgsA 的活性。在革兰氏阳性菌中,与磷酸化蛋白 Crh 的相互作用控制着 MgsA 的活性。在没有首选碳源的情况下,Crh 处于非磷酸化状态,并与 MgsA 结合,从而抑制 MgsA 的活性。为了更好地理解 MgsA 的调控机制,我们在此对 MgsA 及其与 Crh 的相互作用进行了生化和结构分析。我们的研究结果表明,MgsA 在晶体结构中形成六聚体(三聚体二聚体),而在溶液中似乎存在于二聚体和六聚体之间的平衡状态。在六聚体中,可以区分出两种替代的二聚体,但似乎只有一种在溶液中占主导地位。进一步的分析强烈表明,六聚体是具有生物活性的形式。交联研究表明,Crh 与 MgsA 的 N 端螺旋相互作用,Crh 与 MgsA 的结合通过扭曲并从而阻断其活性位点使 MgsA 失活。总之,我们的结果表明,二聚体和六聚体形式的 MgsA 在溶液中处于平衡状态,六聚体形式是具有活性的形式,与 Crh 的结合使 MgsA 发生变形并阻断其活性位点。