Suppr超能文献

甲基乙二醛合酶 MgsA 与碳通量调节剂 Crh 相互作用的结构基础。

Structural basis for the regulatory interaction of the methylglyoxal synthase MgsA with the carbon flux regulator Crh in .

机构信息

From the Departments of Molecular Structural Biology and

General Microbiology, GZMB, Georg-August-University Göttingen, 37077 Göttingen, Germany.

出版信息

J Biol Chem. 2018 Apr 20;293(16):5781-5792. doi: 10.1074/jbc.RA117.001289. Epub 2018 Mar 7.

Abstract

Utilization of energy-rich carbon sources such as glucose is fundamental to the evolutionary success of bacteria. Glucose can be catabolized via glycolysis for feeding the intermediary metabolism. The methylglyoxal synthase MgsA produces methylglyoxal from the glycolytic intermediate dihydroxyacetone phosphate. Methylglyoxal is toxic, requiring stringent regulation of MgsA activity. In the Gram-positive bacterium , an interaction with the phosphoprotein Crh controls MgsA activity. In the absence of preferred carbon sources, Crh is present in the nonphosphorylated state and binds to and thereby inhibits MgsA. To better understand the mechanism of regulation of MgsA, here we performed biochemical and structural analyses of MgsA and of its interaction with Crh. Our results indicated that MgsA forms a hexamer ( a trimer of dimers) in the crystal structure, whereas it seems to exist in an equilibrium between a dimer and hexamer in solution. In the hexamer, two alternative dimers could be distinguished, but only one appeared to prevail in solution. Further analysis strongly suggested that the hexamer is the biologically active form. cross-linking studies revealed that Crh interacts with the N-terminal helices of MgsA and that the Crh-MgsA binding inactivates MgsA by distorting and thereby blocking its active site. In summary, our results indicate that dimeric and hexameric MgsA species exist in an equilibrium in solution, that the hexameric species is the active form, and that binding to Crh deforms and blocks the active site in MgsA.

摘要

细菌的进化成功依赖于对诸如葡萄糖等富含能量碳源的利用。葡萄糖可通过糖酵解作用代谢为中间代谢物以供营养。甲基乙二醛合酶(MgsA)可将糖酵解中间产物二羟丙酮磷酸转化为甲基乙二醛。由于甲基乙二醛具有毒性,因此需要严格控制 MgsA 的活性。在革兰氏阳性菌中,与磷酸化蛋白 Crh 的相互作用控制着 MgsA 的活性。在没有首选碳源的情况下,Crh 处于非磷酸化状态,并与 MgsA 结合,从而抑制 MgsA 的活性。为了更好地理解 MgsA 的调控机制,我们在此对 MgsA 及其与 Crh 的相互作用进行了生化和结构分析。我们的研究结果表明,MgsA 在晶体结构中形成六聚体(三聚体二聚体),而在溶液中似乎存在于二聚体和六聚体之间的平衡状态。在六聚体中,可以区分出两种替代的二聚体,但似乎只有一种在溶液中占主导地位。进一步的分析强烈表明,六聚体是具有生物活性的形式。交联研究表明,Crh 与 MgsA 的 N 端螺旋相互作用,Crh 与 MgsA 的结合通过扭曲并从而阻断其活性位点使 MgsA 失活。总之,我们的结果表明,二聚体和六聚体形式的 MgsA 在溶液中处于平衡状态,六聚体形式是具有活性的形式,与 Crh 的结合使 MgsA 发生变形并阻断其活性位点。

相似文献

1
Structural basis for the regulatory interaction of the methylglyoxal synthase MgsA with the carbon flux regulator Crh in .
J Biol Chem. 2018 Apr 20;293(16):5781-5792. doi: 10.1074/jbc.RA117.001289. Epub 2018 Mar 7.
2
Crh, the paralogue of the phosphocarrier protein HPr, controls the methylglyoxal bypass of glycolysis in Bacillus subtilis.
Mol Microbiol. 2011 Nov;82(3):770-87. doi: 10.1111/j.1365-2958.2011.07857.x. Epub 2011 Oct 12.
3
Methylglyoxal synthase regulates cell elongation via alterations of cellular methylglyoxal and spermidine content in Bacillus subtilis.
Int J Biochem Cell Biol. 2017 Oct;91(Pt A):14-28. doi: 10.1016/j.biocel.2017.08.005. Epub 2017 Aug 12.
4
Solution structure and dynamics of Crh, the Bacillus subtilis catabolite repression HPr.
J Mol Biol. 2002 Mar 15;317(1):131-44. doi: 10.1006/jmbi.2002.5397.
6
Phosphoprotein Crh-Ser46-P displays altered binding to CcpA to effect carbon catabolite regulation.
J Biol Chem. 2006 Mar 10;281(10):6793-800. doi: 10.1074/jbc.M509977200. Epub 2005 Nov 29.
8
Carbon source control of the phosphorylation state of the Bacillus subtilis carbon-flux regulator Crh in vivo.
FEMS Microbiol Lett. 2012 Feb;327(1):47-53. doi: 10.1111/j.1574-6968.2011.02456.x. Epub 2011 Nov 28.
9
A Crh-specific function in carbon catabolite repression in Bacillus subtilis.
FEMS Microbiol Lett. 2003 Mar 28;220(2):277-80. doi: 10.1016/S0378-1097(03)00126-5.

引用本文的文献

1
Methylglyoxal Formation-Metabolic Routes and Consequences.
Antioxidants (Basel). 2025 Feb 13;14(2):212. doi: 10.3390/antiox14020212.
2
Changes in the Gut Microbiome Associated with Intussusception in Patients with Peutz-Jeghers Syndrome.
Microbiol Spectr. 2023 Jan 31;11(2):e0281922. doi: 10.1128/spectrum.02819-22.
4
Why Nature Chose Potassium.
J Mol Evol. 2019 Dec;87(9-10):271-288. doi: 10.1007/s00239-019-09915-2. Epub 2019 Oct 28.

本文引用的文献

1
Methylglyoxal synthase regulates cell elongation via alterations of cellular methylglyoxal and spermidine content in Bacillus subtilis.
Int J Biochem Cell Biol. 2017 Oct;91(Pt A):14-28. doi: 10.1016/j.biocel.2017.08.005. Epub 2017 Aug 12.
2
Structure determination of contaminant proteins using the MarathonMR procedure.
J Struct Biol. 2017 Mar;197(3):372-378. doi: 10.1016/j.jsb.2017.01.005. Epub 2017 Feb 3.
3
Highly precise quantification of protein molecules per cell during stress and starvation responses in Bacillus subtilis.
Mol Cell Proteomics. 2014 Sep;13(9):2260-76. doi: 10.1074/mcp.M113.035741. Epub 2014 May 30.
5
Deciphering key features in protein structures with the new ENDscript server.
Nucleic Acids Res. 2014 Jul;42(Web Server issue):W320-4. doi: 10.1093/nar/gku316. Epub 2014 Apr 21.
6
Methylglyoxal resistance in Bacillus subtilis: contributions of bacillithiol-dependent and independent pathways.
Mol Microbiol. 2014 Feb;91(4):706-15. doi: 10.1111/mmi.12489. Epub 2014 Jan 7.
7
Insights into the activation of the helicase Prp43 by biochemical studies and structural mass spectrometry.
Nucleic Acids Res. 2014 Jan;42(2):1162-79. doi: 10.1093/nar/gkt985. Epub 2013 Oct 27.
8
Regulation of Bacillus subtilis bacillithiol biosynthesis operons by Spx.
Microbiology (Reading). 2013 Oct;159(Pt 10):2025-2035. doi: 10.1099/mic.0.070482-0. Epub 2013 Jul 26.
9
Transmitting the allosteric signal in methylglyoxal synthase.
Protein Eng Des Sel. 2013 Jul;26(7):445-52. doi: 10.1093/protein/gzt014. Epub 2013 Apr 16.
10
A Pareto-optimal refinement method for protein design scaffolds.
PLoS One. 2013;8(4):e59004. doi: 10.1371/journal.pone.0059004. Epub 2013 Apr 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验