Suppr超能文献

Crh 是磷酸载体蛋白 HPr 的旁系同源物,它控制枯草芽孢杆菌糖酵解的甲基乙二醛旁路。

Crh, the paralogue of the phosphocarrier protein HPr, controls the methylglyoxal bypass of glycolysis in Bacillus subtilis.

机构信息

Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August-University, Grisebachstrasse 8, 37077 Göttingen, Germany.

出版信息

Mol Microbiol. 2011 Nov;82(3):770-87. doi: 10.1111/j.1365-2958.2011.07857.x. Epub 2011 Oct 12.

Abstract

The histidine protein HPr has a key role in regulation of carbohydrate utilization in low-GC Gram-positive bacteria. Bacilli possess the paralogue Crh. Like HPr, Crh becomes phosphorylated by kinase HPrK/P in response to high fructose-1,6-bisphosphate concentrations. However, Crh can only partially substitute for the regulatory functions of HPr leaving its role mysterious. Using protein co-purification, we identified enzyme methylglyoxal synthase MgsA as interaction partner of Crh in Bacillus subtilis. MgsA converts dihydroxyacetone-phosphate to methylglyoxal and thereby initiates a glycolytic bypass that prevents the deleterious accumulation of phospho-sugars under carbon overflow conditions. However, methylgyloxal is toxic and its production requires control. We show here that exclusively the non-phosphorylated form of Crh interacts with MgsA in vivo and inhibits MgsA activity in vitro. Accordingly, Crh inhibits methylglyoxal formation in vivo under nutritional famine conditions that favour a low HPr kinase activity. Thus, Crh senses the metabolic state of the cell, as reflected by its phosphorylation state, and accordingly controls flux through the harmful methylglyoxal pathway. Interestingly, HPr is unable to bind and regulate MgsA, making this a bona fide function of Crh. Four residues that differ in the interaction surfaces of HPr and Crh may account for this difference.

摘要

组氨酸蛋白 HPr 在低 GC 革兰氏阳性菌碳水化合物利用的调控中起着关键作用。芽孢杆菌拥有类似的 Crh 蛋白。与 HPr 一样,Crh 在高果糖-1,6-二磷酸浓度下会被激酶 HPrK/P 磷酸化。然而,Crh 只能部分替代 HPr 的调节功能,其具体作用仍不清楚。通过蛋白质共纯化,我们鉴定出酶甲基乙二醛合酶 MgsA 是枯草芽孢杆菌中 Crh 的相互作用伙伴。MgsA 将二羟丙酮磷酸转化为甲基乙二醛,从而启动糖酵解旁路,防止碳溢流条件下磷酸糖的有害积累。然而,甲基乙二醛是有毒的,其产生需要控制。我们在这里表明,只有非磷酸化形式的 Crh 才能在体内与 MgsA 相互作用,并在体外抑制 MgsA 的活性。因此,Crh 在营养饥饿条件下(有利于低 HPr 激酶活性)抑制体内甲基乙二醛的形成。因此,Crh 可以根据其磷酸化状态来感知细胞的代谢状态,并相应地控制有害的甲基乙二醛途径的通量。有趣的是,HPr 不能结合和调节 MgsA,这使其成为 Crh 的一个真正的功能。HPr 和 Crh 的相互作用表面存在四个不同的残基,可能导致了这种差异。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验