National Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, 350117, People's Republic of China.
Appl Microbiol Biotechnol. 2018 Apr;102(8):3623-3633. doi: 10.1007/s00253-018-8881-0. Epub 2018 Mar 7.
We previously developed a gamma-amino butyric acid (GABA)-producing strain of Escherichia coli, leading to production of 614.15 g/L GABA at 45 °C from L-glutamic acid (L-Glu) with a productivity of 40.94 g/L/h by three successive whole-cell conversion cycles. However, the increase in pH caused by the accumulation of GABA resulted in inactivation of the biocatalyst and consequently led to relatively lower productivity. In this study, by overcoming the major problem associated with the increase in pH during the production process, a more efficient biocatalyst was obtained through cascade modifications of the previously reported E. coli strain. First, we introduced four amino acid mutations to the codon-optimized GadB protein from Lactococcus lactis to shift its decarboxylation activity toward a neutral pH, resulting in 306.65 g/L of GABA with 99.14 mol% conversion yield and 69.8% increase in GABA productivity. Second, we promoted transportation of L-Glu and GABA by removing the genomic region encoding the C-plug of GadC (a glutamate/GABA antiporter) to allow its transport path to remain open at a neutral pH, which improved the GABA productivity by 16.8% with 99.3 mol% conversion of 3 M L-Glu. Third, we enhanced the expression of soluble GadB by introducing the GroESL molecular chaperones, leading to 20.2% improvement in GABA productivity, with 307.40 g/L of GABA and a 61.48 g/L/h productivity obtained in one cycle. Finally, we inhibited the degradation of GABA by inactivation of gadA and gadB from the E. coli genome, which resulted in almost no GABA degradation after 40 h. After the cascade system modifications, the engineered recombinant E. coli strain achieved a 44.04 g/L/h productivity with a 99.6 mol% conversion of 3 M L-Glu in a 5-L bioreactor, about twofold increase in productivity compared to the starting strain. This increase represents the highest GABA productivity by whole-cell bioconversion using L-Glu as a substrate in one cycle observed to date, even better than the productivity obtained from the three successive conversion cycles.
我们之前开发了一株产γ-氨基丁酸(GABA)的大肠杆菌,通过三次全细胞转化循环,从 L-谷氨酸(L-Glu)生产 614.15g/L GABA,生产能力为 40.94g/L/h,产率为 45°C。然而,GABA 积累导致的 pH 值升高会使生物催化剂失活,从而导致相对较低的生产能力。在这项研究中,通过克服生产过程中 pH 值升高带来的主要问题,我们通过对之前报道的大肠杆菌菌株进行级联修饰,获得了一种更有效的生物催化剂。首先,我们对来自乳球菌的优化密码子 GadB 蛋白引入了四个氨基酸突变,将其脱羧活性转移到中性 pH 值,从而得到 306.65g/L 的 GABA,转化率为 99.14mol%,GABA 生产能力提高了 69.8%。其次,我们通过去除 GadC(谷氨酸/GABA 反向转运体)的基因组编码 C-插件,促进 L-Glu 和 GABA 的运输,使其在中性 pH 值下的运输路径保持开放,从而使 GABA 生产能力提高了 16.8%,3M L-Glu 的转化率为 99.3mol%。第三,我们通过引入 GroESL 分子伴侣来增强可溶性 GadB 的表达,使 GABA 生产能力提高了 20.2%,在一个循环中获得了 307.40g/L 的 GABA 和 61.48g/L/h 的生产能力。最后,我们通过失活大肠杆菌基因组中的 gadA 和 gadB 来抑制 GABA 的降解,这使得在 40 小时后几乎没有 GABA 降解。经过级联系统修饰,工程重组大肠杆菌菌株在 5L 生物反应器中实现了 44.04g/L/h 的生产能力,转化率为 99.6mol%,转化率为 3M L-Glu,与起始菌株相比,生产能力提高了约两倍。这一提高代表了迄今为止使用 L-Glu 作为底物进行全细胞生物转化获得的最高 GABA 生产能力,甚至优于通过连续三次转化循环获得的生产能力。