Suppr超能文献

肌腱的疲劳负荷会导致胶原蛋白扭结和变性,但不会改变局部组织力学性能。

Fatigue loading of tendon results in collagen kinking and denaturation but does not change local tissue mechanics.

作者信息

Szczesny Spencer E, Aeppli Céline, David Alexander, Mauck Robert L

机构信息

Department of Orthopaedic Surgery, University of Pennsylvania, 110 Stemmler Hall, 36th Street & Hamilton Walk, Philadelphia, PA 19104, United States; Department of Biomedical Engineering, Department of Orthopaedics and Rehabilitation, Pennsylvania State University, 205 Hallowell Building, University Park, PA 16802, United States.

Eidgenössische Technische Hochschule, Rämistrasse 101, 8092 Zürich, Switzerland.

出版信息

J Biomech. 2018 Apr 11;71:251-256. doi: 10.1016/j.jbiomech.2018.02.014. Epub 2018 Feb 21.

Abstract

Fatigue loading is a primary cause of tendon degeneration, which is characterized by the disruption of collagen fibers and the appearance of abnormal (e.g., cartilaginous, fatty, calcified) tissue deposits. The formation of such abnormal deposits, which further weakens the tissue, suggests that resident tendon cells acquire an aberrant phenotype in response to fatigue damage and the resulting altered mechanical microenvironment. While fatigue loading produces clear changes in collagen organization and molecular denaturation, no data exist regarding the effect of fatigue on the local tissue mechanical properties. Therefore, the objective of this study was to identify changes in the local tissue stiffness of tendons after fatigue loading. We hypothesized that fatigue damage would reduce local tissue stiffness, particularly in areas with significant structural damage (e.g., collagen denaturation). We tested this hypothesis by identifying regions of local fatigue damage (i.e., collagen fiber kinking and molecular denaturation) via histologic imaging and by measuring the local tissue modulus within these regions via atomic force microscopy (AFM). Counter to our initial hypothesis, we found no change in the local tissue modulus as a consequence of fatigue loading, despite widespread fiber kinking and collagen denaturation. These data suggest that immediate changes in topography and tissue structure - but not local tissue mechanics - initiate the early changes in tendon cell phenotype as a consequence of fatigue loading that ultimately culminate in tendon degeneration.

摘要

疲劳负荷是肌腱退变的主要原因,其特征是胶原纤维断裂以及出现异常(如软骨样、脂肪样、钙化)组织沉积。这种异常沉积物的形成会进一步削弱组织,这表明驻留的肌腱细胞会因应疲劳损伤和由此改变的力学微环境而获得异常表型。虽然疲劳负荷会使胶原组织和分子变性发生明显变化,但关于疲劳对局部组织力学性能的影响尚无数据。因此,本研究的目的是确定疲劳负荷后肌腱局部组织刚度的变化。我们假设疲劳损伤会降低局部组织刚度,尤其是在结构损伤严重的区域(如胶原变性区域)。我们通过组织学成像识别局部疲劳损伤区域(即胶原纤维扭结和分子变性),并通过原子力显微镜(AFM)测量这些区域内的局部组织模量来验证这一假设。与我们最初的假设相反,尽管存在广泛的纤维扭结和胶原变性,但我们发现疲劳负荷并未导致局部组织模量发生变化。这些数据表明,地形和组织结构的即时变化——而非局部组织力学——会引发肌腱细胞表型的早期变化,这种变化最终导致肌腱退变。

相似文献

1
Fatigue loading of tendon results in collagen kinking and denaturation but does not change local tissue mechanics.
J Biomech. 2018 Apr 11;71:251-256. doi: 10.1016/j.jbiomech.2018.02.014. Epub 2018 Feb 21.
2
Mouse Achilles tendons exhibit collagen disorganization but minimal collagen denaturation during cyclic loading to failure.
J Biomech. 2023 Apr;151:111545. doi: 10.1016/j.jbiomech.2023.111545. Epub 2023 Mar 12.
4
Tendons exhibit greater resistance to tissue and molecular-level damage with increasing strain rate during cyclic fatigue.
Acta Biomater. 2021 Oct 15;134:435-442. doi: 10.1016/j.actbio.2021.07.045. Epub 2021 Jul 24.
5
Collagen fibrils in functionally distinct tendons have differing structural responses to tendon rupture and fatigue loading.
Acta Biomater. 2016 Sep 15;42:296-307. doi: 10.1016/j.actbio.2016.06.017. Epub 2016 Jun 14.
6
Functionally distinct tendon fascicles exhibit different creep and stress relaxation behaviour.
Proc Inst Mech Eng H. 2014 Jan;228(1):49-59. doi: 10.1177/0954411913509977. Epub 2013 Nov 27.
7
Multiscale mechanical integrity of human supraspinatus tendon in shear after elastin depletion.
J Mech Behav Biomed Mater. 2016 Oct;63:443-455. doi: 10.1016/j.jmbbm.2016.06.032. Epub 2016 Jul 7.
8
Evaluating changes in tendon crimp with fatigue loading as an ex vivo structural assessment of tendon damage.
J Orthop Res. 2015 Jun;33(6):904-10. doi: 10.1002/jor.22875. Epub 2015 Apr 27.
9
Tendon Contraction After Cyclic Elongation Is an Age-Dependent Phenomenon: In Vitro and In Vivo Comparisons.
Am J Sports Med. 2014 Jun;42(6):1471-7. doi: 10.1177/0363546514526691. Epub 2014 Mar 25.

引用本文的文献

6
Assessment of Mechanically Induced Changes in Helical Fiber Microstructure Using Diffusion Tensor Imaging.
Ann Biomed Eng. 2024 Apr;52(4):832-844. doi: 10.1007/s10439-023-03420-w. Epub 2023 Dec 27.
9
The Chemistry and Biology of Collagen Hybridization.
J Am Chem Soc. 2023 May 24;145(20):10901-10916. doi: 10.1021/jacs.3c00713. Epub 2023 May 9.
10
An Adolescent Murine In Vivo Anterior Cruciate Ligament Overuse Injury Model.
Am J Sports Med. 2023 Jun;51(7):1721-1732. doi: 10.1177/03635465231165753. Epub 2023 Apr 24.

本文引用的文献

1
Sex Differences in Mechanical Properties of the Achilles Tendon: Longitudinal Response to Repetitive Loading Exercise.
J Strength Cond Res. 2018 Nov;32(11):3070-3079. doi: 10.1519/JSC.0000000000002386.
2
Crimped Nanofibrous Biomaterials Mimic Microstructure and Mechanics of Native Tissue and Alter Strain Transfer to Cells.
ACS Biomater Sci Eng. 2017 Nov 13;3(11):2869-2876. doi: 10.1021/acsbiomaterials.6b00646. Epub 2016 Dec 8.
4
In vitro loading models for tendon mechanobiology.
J Orthop Res. 2018 Feb;36(2):566-575. doi: 10.1002/jor.23752. Epub 2017 Nov 2.
5
8
Predicting tenocyte expression profiles and average molecular concentrations in Achilles tendon ECM from tissue strain and fiber damage.
Biomech Model Mechanobiol. 2017 Aug;16(4):1329-1348. doi: 10.1007/s10237-017-0890-x. Epub 2017 Mar 13.
9
Tendon exhibits complex poroelastic behavior at the nanoscale as revealed by high-frequency AFM-based rheology.
J Biomech. 2017 Mar 21;54:11-18. doi: 10.1016/j.jbiomech.2017.01.029. Epub 2017 Jan 30.
10
Males have Inferior Achilles Tendon Material Properties Compared to Females in a Rodent Model.
Ann Biomed Eng. 2016 Oct;44(10):2901-2910. doi: 10.1007/s10439-016-1635-1. Epub 2016 May 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验