Suppr超能文献

卷曲纳米纤维生物材料模拟天然组织的微观结构和力学性能,并改变应变向细胞的传递。

Crimped Nanofibrous Biomaterials Mimic Microstructure and Mechanics of Native Tissue and Alter Strain Transfer to Cells.

作者信息

Szczesny Spencer E, Driscoll Tristan P, Tseng Hsiao-Yun, Liu Pang-Ching, Heo Su-Jin, Mauck Robert L, Chao Pen-Hsiu G

机构信息

McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, Philadelphia, Pennsylvania 19104, United States.

Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.

出版信息

ACS Biomater Sci Eng. 2017 Nov 13;3(11):2869-2876. doi: 10.1021/acsbiomaterials.6b00646. Epub 2016 Dec 8.

Abstract

To fully recapitulate tissue microstructure and mechanics, fiber crimping must exist within biomaterials used for tendon/ligament engineering. Existing crimped nanofibrous scaffolds produced via electrospinning are dense materials that prevent cellular infiltration into the scaffold interior. In this study, we used a sacrificial fiber population to increase the scaffold porosity and evaluated the effect on fiber crimping. We found that increasing scaffold porosity increased fiber crimping and ensured that the fibers properly uncrimped as the scaffolds were stretched by minimizing fiber-fiber interactions. Constitutive modeling demonstrated that the fiber uncrimping produced a nonlinear mechanical behavior similar to that of native tendon and ligament. Interestingly, fiber crimping altered strain transmission to the nuclei of cells seeded on the scaffolds, which may account for previously observed changes in gene expression. These crimped biomaterials are useful for developing functional fiber-reinforced tissues and for studying the effects of altered fiber crimping due to damage or degeneration.

摘要

为了全面重现组织微观结构和力学性能,用于肌腱/韧带工程的生物材料中必须存在纤维卷曲。通过静电纺丝制备的现有卷曲纳米纤维支架是致密材料,会阻止细胞渗入支架内部。在本研究中,我们使用了牺牲纤维群体来增加支架孔隙率,并评估其对纤维卷曲的影响。我们发现,增加支架孔隙率会增加纤维卷曲,并通过最小化纤维-纤维相互作用确保在支架拉伸时纤维能正确展开。本构模型表明,纤维展开产生了类似于天然肌腱和韧带的非线性力学行为。有趣的是,纤维卷曲改变了传递到接种在支架上细胞细胞核的应变,这可能解释了先前观察到的基因表达变化。这些卷曲生物材料可用于开发功能性纤维增强组织,以及研究因损伤或退变导致的纤维卷曲改变的影响。

相似文献

3
Crimped Electrospun Fibers for Tissue Engineering.用于组织工程的卷曲电纺纤维
Methods Mol Biol. 2018;1758:151-159. doi: 10.1007/978-1-4939-7741-3_12.
7
Self-crimping, biodegradable, electrospun polymer microfibers.自卷曲、可生物降解的电纺聚合物微纤维。
Biomacromolecules. 2010 Dec 13;11(12):3624-9. doi: 10.1021/bm101078c. Epub 2010 Nov 3.

引用本文的文献

5
Multi-material electrospinning: from methods to biomedical applications.多材料静电纺丝:从方法到生物医学应用
Mater Today Bio. 2023 Jun 23;21:100710. doi: 10.1016/j.mtbio.2023.100710. eCollection 2023 Aug.
7
Mechanoepigenetic regulation of extracellular matrix homeostasis via Yap and Taz.机械 - 表观遗传调控细胞外基质稳态通过 Yap 和 taz。
Proc Natl Acad Sci U S A. 2023 May 30;120(22):e2211947120. doi: 10.1073/pnas.2211947120. Epub 2023 May 22.
9
Mimicking the Graded Wavy Structure of the Anterior Cruciate Ligament.模拟前交叉韧带的分级波浪结构。
Adv Healthc Mater. 2023 Jul;12(17):e2203023. doi: 10.1002/adhm.202203023. Epub 2023 Apr 2.

本文引用的文献

4
Talin Dependent Mechanosensitivity of Cell Focal Adhesions.踝蛋白依赖的细胞粘着斑机械敏感性
Cell Mol Bioeng. 2015;8(1):151-159. doi: 10.1007/s12195-014-0364-5. Epub 2014 Nov 4.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验