Suppr超能文献

对比增益控制和视网膜神经节细胞通讯。

Contrast gain control and retinogeniculate communication.

机构信息

Center for Neuroscience, University of California, 1544 Newton Court, Davis, CA, 95618, USA.

Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA, USA.

出版信息

Eur J Neurosci. 2019 Apr;49(8):1061-1068. doi: 10.1111/ejn.13904. Epub 2018 Mar 23.

Abstract

Visual information processed in the retina is transmitted to primary visual cortex via relay cells in the lateral geniculate nucleus (LGN) of the dorsal thalamus. Although retinal ganglion cells are the primary source of driving input to LGN neurons, not all retinal spikes are transmitted to the cortex. Here, we investigate the relationship between stimulus contrast and retinogeniculate communication and test the hypothesis that both the time course and strength of retinogeniculate interactions are dynamic and dependent on stimulus contrast. By simultaneously recording the spiking activity of synaptically connected retinal ganglion cells and LGN neurons in the cat, we show that the temporal window for retinogeniculate integration and the effectiveness of individual retinal spikes are inversely proportional to stimulus contrast. This finding provides a mechanistic understanding for the phenomenon of augmented contrast gain control in the LGN-a nonlinear receptive field property of LGN neurons whereby response gain during low-contrast stimulation is enhanced relative to response gain during high-contrast stimulation. In addition, these results support the view that network interactions beyond the retina play an essential role in transforming visual signals en route from retina to cortex.

摘要

视网膜处理的视觉信息通过丘脑背侧膝状体核(LGN)中的中继细胞传递到初级视觉皮层。虽然视网膜神经节细胞是驱动 LGN 神经元输入的主要来源,但并非所有视网膜尖峰都被传递到皮层。在这里,我们研究了刺激对比度与视网膜-膝状体通讯之间的关系,并检验了这样一个假设,即视网膜-膝状体相互作用的时间进程和强度都是动态的,并依赖于刺激对比度。通过同时记录猫中突触连接的视网膜神经节细胞和 LGN 神经元的尖峰活动,我们表明,视网膜-膝状体整合的时间窗口和单个视网膜尖峰的有效性与刺激对比度成反比。这一发现为 LGN 中增强的对比增益控制现象提供了一种机制理解——LGN 神经元的非线性感受野特性,即在低对比度刺激期间,响应增益相对于高对比度刺激期间增强。此外,这些结果支持这样一种观点,即视网膜以外的网络相互作用在将视觉信号从视网膜传输到皮层的过程中起着至关重要的作用。

相似文献

1
Contrast gain control and retinogeniculate communication.
Eur J Neurosci. 2019 Apr;49(8):1061-1068. doi: 10.1111/ejn.13904. Epub 2018 Mar 23.
2
The Augmentation of Retinogeniculate Communication during Thalamic Burst Mode.
J Neurosci. 2019 Jul 17;39(29):5697-5710. doi: 10.1523/JNEUROSCI.2320-18.2019. Epub 2019 May 20.
3
Retinal and Nonretinal Contributions to Extraclassical Surround Suppression in the Lateral Geniculate Nucleus.
J Neurosci. 2017 Jan 4;37(1):226-235. doi: 10.1523/JNEUROSCI.1577-16.2016.
4
Stimulus Contrast and Retinogeniculate Signal Processing.
Front Neural Circuits. 2016 Feb 19;10:8. doi: 10.3389/fncir.2016.00008. eCollection 2016.
8
Surround suppression and temporal processing of visual signals.
J Neurophysiol. 2015 Apr 1;113(7):2605-17. doi: 10.1152/jn.00480.2014. Epub 2015 Feb 4.
9
Physiological characterization of a rare subpopulation of doublet-spiking neurons in the ferret lateral geniculate nucleus.
J Neurophysiol. 2020 Aug 1;124(2):432-442. doi: 10.1152/jn.00191.2020. Epub 2020 Jul 15.
10
Transfer characteristics of X LGN neurons in cats reared with early discordant binocular vision.
J Neurophysiol. 1995 Dec;74(6):2558-72. doi: 10.1152/jn.1995.74.6.2558.

引用本文的文献

1
Differential Impact of Retinal Lesions on Visual Responses of LGN X and Y Cells.
J Neurosci. 2025 Jun 4;45(23):e0436252025. doi: 10.1523/JNEUROSCI.0436-25.2025.
2
Stimulus contrast modulates burst activity in the lateral geniculate nucleus.
Curr Res Neurobiol. 2023 Jun 10;4:100096. doi: 10.1016/j.crneur.2023.100096. eCollection 2023.
3
Contrast and Luminance Gain Control in the Macaque's Lateral Geniculate Nucleus.
eNeuro. 2023 Mar 20;10(3). doi: 10.1523/ENEURO.0515-22.2023. Print 2023 Mar.
4
Dynamics of Temporal Integration in the Lateral Geniculate Nucleus.
eNeuro. 2022 Aug 23;9(4). doi: 10.1523/ENEURO.0088-22.2022. Print 2022 Jul-Aug.
5
The Augmentation of Retinogeniculate Communication during Thalamic Burst Mode.
J Neurosci. 2019 Jul 17;39(29):5697-5710. doi: 10.1523/JNEUROSCI.2320-18.2019. Epub 2019 May 20.

本文引用的文献

1
Spatial scale of receptive fields in the visual sector of the cat thalamic reticular nucleus.
Nat Commun. 2017 Oct 6;8(1):800. doi: 10.1038/s41467-017-00762-7.
2
Visual Functions of the Thalamus.
Annu Rev Vis Sci. 2015 Nov;1:351-371. doi: 10.1146/annurev-vision-082114-035920.
3
Retinal and Nonretinal Contributions to Extraclassical Surround Suppression in the Lateral Geniculate Nucleus.
J Neurosci. 2017 Jan 4;37(1):226-235. doi: 10.1523/JNEUROSCI.1577-16.2016.
4
Nonlinear computations shaping temporal processing of precortical vision.
J Neurophysiol. 2016 Sep 1;116(3):1344-57. doi: 10.1152/jn.00878.2015. Epub 2016 Jun 22.
5
Stimulus Contrast and Retinogeniculate Signal Processing.
Front Neural Circuits. 2016 Feb 19;10:8. doi: 10.3389/fncir.2016.00008. eCollection 2016.
6
How inhibitory circuits in the thalamus serve vision.
Annu Rev Neurosci. 2015 Jul 8;38:309-29. doi: 10.1146/annurev-neuro-071013-014229.
7
Surround suppression and temporal processing of visual signals.
J Neurophysiol. 2015 Apr 1;113(7):2605-17. doi: 10.1152/jn.00480.2014. Epub 2015 Feb 4.
8
Nonlinear dendritic integration of electrical and chemical synaptic inputs drives fine-scale correlations.
Nat Neurosci. 2014 Dec;17(12):1759-66. doi: 10.1038/nn.3851. Epub 2014 Oct 26.
9
A retinal source of spatial contrast gain control.
J Neurosci. 2012 Jul 18;32(29):9824-30. doi: 10.1523/JNEUROSCI.0207-12.2012.
10
Normalization as a canonical neural computation.
Nat Rev Neurosci. 2011 Nov 23;13(1):51-62. doi: 10.1038/nrn3136.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验