Suppr超能文献

基质辅助激光解吸电离飞行时间质谱法快速简便检测耐甲氧西林金黄色葡萄球菌低水平万古霉素耐药性。

Rapid and easy detection of low-level resistance to vancomycin in methicillin-resistant Staphylococcus aureus by matrix-assisted laser desorption ionization time-of-flight mass spectrometry.

机构信息

Department of Pharmacy, Juntendo University Hospital, Tokyo, Japan.

Infection Control Research Center, Kitasato Institute for Life Science, Kitasato University, Tokyo, Japan.

出版信息

PLoS One. 2018 Mar 9;13(3):e0194212. doi: 10.1371/journal.pone.0194212. eCollection 2018.

Abstract

Vancomycin-intermediately resistant Staphylococcus aureus (VISA) and heterogeneous VISA (hVISA) are associated with treatment failure. hVISA contains only a subpopulation of cells with increased minimal inhibitory concentrations, and its detection is problematic because it is classified as vancomycin-susceptible by standard susceptibility testing and the gold-standard method for its detection is impractical in clinical microbiology laboratories. Recently, a research group developed a machine-learning classifier to distinguish VISA and hVISA from vancomycin-susceptible S. aureus (VSSA) according to matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) data. Nonetheless, the sensitivity of hVISA classification was found to be 76%, and the program was not completely automated with a graphical user interface. Here, we developed a more accurate machine-learning classifier for discrimination of hVISA from VSSA and VISA among MRSA isolates in Japanese hospitals by means of MALDI-TOF MS data. The classifier showed 99% sensitivity of hVISA classification. Furthermore, we clarified the procedures for preparing samples and obtaining MALDI-TOF MS data and developed all-in-one software, hVISA Classifier, with a graphical user interface that automates the classification and is easy for medical workers to use; it is publicly available at https://github.com/bioprojects/hVISAclassifier. This system is useful and practical for screening MRSA isolates for the hVISA phenotype in clinical microbiology laboratories and thus should improve treatment of MRSA infections.

摘要

耐万古霉素中间葡萄球菌(VISA)和异质性 VISA(hVISA)与治疗失败有关。hVISA 仅包含具有增加的最小抑菌浓度的细胞亚群,并且由于其通过标准药敏试验被分类为万古霉素敏感,并且其检测的金标准方法在临床微生物学实验室中不切实际,因此其检测存在问题。最近,一个研究小组根据基质辅助激光解吸电离飞行时间质谱(MALDI-TOF MS)数据,开发了一种机器学习分类器,用于区分 VISA 和 hVISA 与万古霉素敏感金黄色葡萄球菌(VSSA)。尽管如此,hVISA 分类的灵敏度被发现为 76%,并且该程序没有完全自动化,没有图形用户界面。在这里,我们通过 MALDI-TOF MS 数据开发了一种更准确的机器学习分类器,用于区分日本医院耐甲氧西林金黄色葡萄球菌(MRSA)分离株中的 hVISA 与 VSSA 和 VISA。该分类器对 hVISA 分类的灵敏度为 99%。此外,我们阐明了制备样品和获取 MALDI-TOF MS 数据的程序,并开发了具有图形用户界面的一体式软件 hVISA Classifier,该软件可自动进行分类,易于医疗工作者使用;它可在 https://github.com/bioprojects/hVISAclassifier 上公开获取。该系统对于在临床微生物学实验室中筛选 MRSA 分离株的 hVISA 表型非常有用且实用,因此应改善 MRSA 感染的治疗效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f172/5844673/d9704dae7cc4/pone.0194212.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验