Suppr超能文献

研究果蝇细胞中异染色质修复位点4D动力学的定量方法。

Quantitative Methods to Investigate the 4D Dynamics of Heterochromatic Repair Sites in Drosophila Cells.

作者信息

Caridi Christopher P, Delabaere Laetitia, Tjong Harianto, Hopp Hannah, Das Devika, Alber Frank, Chiolo Irene

机构信息

University of Southern California, Los Angeles, CA, United States.

University of Southern California, Los Angeles, CA, United States.

出版信息

Methods Enzymol. 2018;601:359-389. doi: 10.1016/bs.mie.2017.11.033. Epub 2018 Feb 26.

Abstract

Heterochromatin is mostly composed of long stretches of repeated DNA sequences prone to ectopic recombination during double-strand break (DSB) repair. In Drosophila, "safe" homologous recombination (HR) repair of heterochromatic DSBs relies on a striking relocalization of repair sites to the nuclear periphery. Central to understanding heterochromatin repair is the ability to investigate the 4D dynamics (movement in space and time) of repair sites. A specific challenge of these studies is preventing phototoxicity and photobleaching effects while imaging the sample over long periods of time, and with sufficient time points and Z-stacks to track repair foci over time. Here we describe an optimized approach for high-resolution live imaging of heterochromatic DSBs in Drosophila cells, with a specific emphasis on the fluorescent markers and imaging setup used to capture the motion of repair foci over long-time periods. We detail approaches that minimize photobleaching and phototoxicity with a DeltaVision widefield deconvolution microscope, and image processing techniques for signal recovery postimaging using SoftWorX and Imaris software. We present a method to derive mean square displacement curves revealing some of the biophysical properties of the motion. Finally, we describe a method in R to identify tracts of directed motions (DMs) in mixed trajectories. These approaches enable a deeper understanding of the mechanisms of heterochromatin dynamics and genome stability in the three-dimensional context of the nucleus and have broad applicability in the field of nuclear dynamics.

摘要

异染色质主要由长片段的重复DNA序列组成,在双链断裂(DSB)修复过程中容易发生异位重组。在果蝇中,异染色质DSB的“安全”同源重组(HR)修复依赖于修复位点向核周边的显著重新定位。理解异染色质修复的核心在于研究修复位点的4D动态(空间和时间上的运动)的能力。这些研究的一个特殊挑战是在长时间对样品成像时,同时要有足够的时间点和Z轴堆叠来跟踪修复灶随时间的变化,以防止光毒性和光漂白效应。在这里,我们描述了一种优化的方法,用于果蝇细胞中异染色质DSB的高分辨率实时成像,特别强调用于长时间捕获修复灶运动的荧光标记和成像设置。我们详细介绍了使用DeltaVision宽场去卷积显微镜将光漂白和光毒性降至最低的方法,以及使用SoftWorX和Imaris软件在成像后进行信号恢复的图像处理技术。我们提出了一种推导均方位移曲线的方法,以揭示运动的一些生物物理特性。最后,我们描述了一种在R语言中识别混合轨迹中定向运动(DMs)轨迹的方法。这些方法能够更深入地理解核三维环境中异染色质动力学和基因组稳定性的机制,并且在核动力学领域具有广泛的适用性。

相似文献

1
Quantitative Methods to Investigate the 4D Dynamics of Heterochromatic Repair Sites in Drosophila Cells.
Methods Enzymol. 2018;601:359-389. doi: 10.1016/bs.mie.2017.11.033. Epub 2018 Feb 26.
2
3
Heterochromatic breaks move to the nuclear periphery to continue recombinational repair.
Nat Cell Biol. 2015 Nov;17(11):1401-11. doi: 10.1038/ncb3258. Epub 2015 Oct 26.
4
Nuclear Dynamics of Heterochromatin Repair.
Trends Genet. 2017 Feb;33(2):86-100. doi: 10.1016/j.tig.2016.12.004. Epub 2017 Jan 16.
5
Nuclear F-actin and myosins drive relocalization of heterochromatic breaks.
Nature. 2018 Jul;559(7712):54-60. doi: 10.1038/s41586-018-0242-8. Epub 2018 Jun 20.
6
And yet, it moves: nuclear and chromatin dynamics of a heterochromatic double-strand break.
Philos Trans R Soc Lond B Biol Sci. 2017 Oct 5;372(1731). doi: 10.1098/rstb.2016.0291.
7
Cervantes and Quijote protect heterochromatin from aberrant recombination and lead the way to the nuclear periphery.
Nucleus. 2016 Sep 2;7(5):485-497. doi: 10.1080/19491034.2016.1239683. Epub 2016 Sep 27.
9
10
Actin' between phase separated domains for heterochromatin repair.
DNA Repair (Amst). 2019 Sep;81:102646. doi: 10.1016/j.dnarep.2019.102646. Epub 2019 Jul 8.

引用本文的文献

1
Off-pore Nup98 condensates mobilize heterochromatic breaks and exclude Rad51.
Mol Cell. 2025 Jun 19;85(12):2355-2373.e11. doi: 10.1016/j.molcel.2025.05.012. Epub 2025 Jun 5.
2
Nuclear and genome dynamics underlying DNA double-strand break repair.
Nat Rev Mol Cell Biol. 2025 Mar 17. doi: 10.1038/s41580-025-00828-1.
3
Replication forks associated with long nuclear actin filaments in mild stress conditions display increased dynamics.
MicroPubl Biol. 2024 Jul 31;2024. doi: 10.17912/micropub.biology.001259. eCollection 2024.
4
"Off-pore" nucleoporins relocalize heterochromatic breaks through phase separation.
bioRxiv. 2024 Jul 18:2023.12.07.570729. doi: 10.1101/2023.12.07.570729.
5
Nup153 is not required for anchoring heterochromatic DSBs to the nuclear periphery.
MicroPubl Biol. 2024 Apr 26;2024. doi: 10.17912/micropub.biology.001176. eCollection 2024.
7
An Expanding Toolkit for Heterochromatin Repair Studies.
Genes (Basel). 2022 Mar 17;13(3):529. doi: 10.3390/genes13030529.
8
Multi-scale dynamics of heterochromatin repair.
Curr Opin Genet Dev. 2021 Dec;71:206-215. doi: 10.1016/j.gde.2021.09.007. Epub 2021 Oct 28.
9
, an Application for Unsupervised Analysis of Chromosome Movements in Meiosis.
Cells. 2021 Aug 6;10(8):2013. doi: 10.3390/cells10082013.
10
Complex Chromatin Motions for DNA Repair.
Front Genet. 2020 Aug 27;11:800. doi: 10.3389/fgene.2020.00800. eCollection 2020.

本文引用的文献

1
And yet, it moves: nuclear and chromatin dynamics of a heterochromatic double-strand break.
Philos Trans R Soc Lond B Biol Sci. 2017 Oct 5;372(1731). doi: 10.1098/rstb.2016.0291.
2
The Emerging Role of the Cytoskeleton in Chromosome Dynamics.
Front Genet. 2017 May 19;8:60. doi: 10.3389/fgene.2017.00060. eCollection 2017.
3
Nuclear Dynamics of Heterochromatin Repair.
Trends Genet. 2017 Feb;33(2):86-100. doi: 10.1016/j.tig.2016.12.004. Epub 2017 Jan 16.
4
Histone degradation in response to DNA damage enhances chromatin dynamics and recombination rates.
Nat Struct Mol Biol. 2017 Feb;24(2):99-107. doi: 10.1038/nsmb.3347. Epub 2017 Jan 9.
5
Cervantes and Quijote protect heterochromatin from aberrant recombination and lead the way to the nuclear periphery.
Nucleus. 2016 Sep 2;7(5):485-497. doi: 10.1080/19491034.2016.1239683. Epub 2016 Sep 27.
7
Temporal and Spatial Uncoupling of DNA Double Strand Break Repair Pathways within Mammalian Heterochromatin.
Mol Cell. 2016 Jul 21;63(2):293-305. doi: 10.1016/j.molcel.2016.06.002. Epub 2016 Jul 7.
8
SUMO-Dependent Relocalization of Eroded Telomeres to Nuclear Pore Complexes Controls Telomere Recombination.
Cell Rep. 2016 May 10;15(6):1242-53. doi: 10.1016/j.celrep.2016.04.008. Epub 2016 Apr 28.
9
PolySUMOylation by Siz2 and Mms21 triggers relocation of DNA breaks to nuclear pores through the Slx5/Slx8 STUbL.
Genes Dev. 2016 Apr 15;30(8):931-45. doi: 10.1101/gad.277665.116. Epub 2016 Apr 7.
10
DNA damage signalling targets the kinetochore to promote chromatin mobility.
Nat Cell Biol. 2016 Mar;18(3):281-90. doi: 10.1038/ncb3308. Epub 2016 Feb 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验