Caridi Christopher P, Delabaere Laetitia, Tjong Harianto, Hopp Hannah, Das Devika, Alber Frank, Chiolo Irene
University of Southern California, Los Angeles, CA, United States.
University of Southern California, Los Angeles, CA, United States.
Methods Enzymol. 2018;601:359-389. doi: 10.1016/bs.mie.2017.11.033. Epub 2018 Feb 26.
Heterochromatin is mostly composed of long stretches of repeated DNA sequences prone to ectopic recombination during double-strand break (DSB) repair. In Drosophila, "safe" homologous recombination (HR) repair of heterochromatic DSBs relies on a striking relocalization of repair sites to the nuclear periphery. Central to understanding heterochromatin repair is the ability to investigate the 4D dynamics (movement in space and time) of repair sites. A specific challenge of these studies is preventing phototoxicity and photobleaching effects while imaging the sample over long periods of time, and with sufficient time points and Z-stacks to track repair foci over time. Here we describe an optimized approach for high-resolution live imaging of heterochromatic DSBs in Drosophila cells, with a specific emphasis on the fluorescent markers and imaging setup used to capture the motion of repair foci over long-time periods. We detail approaches that minimize photobleaching and phototoxicity with a DeltaVision widefield deconvolution microscope, and image processing techniques for signal recovery postimaging using SoftWorX and Imaris software. We present a method to derive mean square displacement curves revealing some of the biophysical properties of the motion. Finally, we describe a method in R to identify tracts of directed motions (DMs) in mixed trajectories. These approaches enable a deeper understanding of the mechanisms of heterochromatin dynamics and genome stability in the three-dimensional context of the nucleus and have broad applicability in the field of nuclear dynamics.
异染色质主要由长片段的重复DNA序列组成,在双链断裂(DSB)修复过程中容易发生异位重组。在果蝇中,异染色质DSB的“安全”同源重组(HR)修复依赖于修复位点向核周边的显著重新定位。理解异染色质修复的核心在于研究修复位点的4D动态(空间和时间上的运动)的能力。这些研究的一个特殊挑战是在长时间对样品成像时,同时要有足够的时间点和Z轴堆叠来跟踪修复灶随时间的变化,以防止光毒性和光漂白效应。在这里,我们描述了一种优化的方法,用于果蝇细胞中异染色质DSB的高分辨率实时成像,特别强调用于长时间捕获修复灶运动的荧光标记和成像设置。我们详细介绍了使用DeltaVision宽场去卷积显微镜将光漂白和光毒性降至最低的方法,以及使用SoftWorX和Imaris软件在成像后进行信号恢复的图像处理技术。我们提出了一种推导均方位移曲线的方法,以揭示运动的一些生物物理特性。最后,我们描述了一种在R语言中识别混合轨迹中定向运动(DMs)轨迹的方法。这些方法能够更深入地理解核三维环境中异染色质动力学和基因组稳定性的机制,并且在核动力学领域具有广泛的适用性。