Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland.
Molecular and Computational Biology Department, University of Southern California, Los Angeles, CA, USA.
Nat Commun. 2023 Nov 28;14(1):7819. doi: 10.1038/s41467-023-43183-5.
Cells rapidly respond to replication stress actively slowing fork progression and inducing fork reversal. How replication fork plasticity is achieved in the context of nuclear organization is currently unknown. Using nuclear actin probes in living and fixed cells, we visualized nuclear actin filaments in unperturbed S phase and observed their rapid extension in number and length upon genotoxic treatments, frequently taking contact with replication factories. Chemically or genetically impairing nuclear actin polymerization shortly before these treatments prevents active fork slowing and abolishes fork reversal. Defective fork remodeling is linked to deregulated chromatin loading of PrimPol, which promotes unrestrained and discontinuous DNA synthesis and limits the recruitment of RAD51 and SMARCAL1 to nascent DNA. Moreover, defective nuclear actin polymerization upon mild replication interference induces chromosomal instability in a PRIMPOL-dependent manner. Hence, by limiting PrimPol activity, nuclear F-actin orchestrates replication fork plasticity and is a key molecular determinant in the rapid cellular response to genotoxic treatments.
细胞迅速对复制压力做出反应,主动减缓叉进展并诱导叉反转。在核组织的背景下,复制叉的可塑性是如何实现的,目前尚不清楚。使用活细胞和固定细胞中的核肌动蛋白探针,我们在未受干扰的 S 期可视化了核肌动蛋白丝,并观察到它们在遗传毒性处理后数量和长度迅速增加,经常与复制工厂接触。在这些处理之前,通过化学或遗传手段抑制核肌动蛋白聚合,可防止主动叉减速并消除叉反转。有缺陷的叉重塑与 PrimPol 失调的染色质加载有关,这会促进无节制和不连续的 DNA 合成,并限制 RAD51 和 SMARCAL1 向新生 DNA 的募集。此外,轻度复制干扰后核肌动蛋白聚合的缺陷以依赖 PRIMPOL 的方式诱导染色体不稳定性。因此,通过限制 PrimPol 的活性,核 F-肌动蛋白协调复制叉的可塑性,是细胞对遗传毒性处理快速反应的关键分子决定因素。