Suppr超能文献

-苯基邻氨基苯甲酸衍生物对独脚金内酯受体的抑制作用:结构与功能的深入研究。

Inhibition of strigolactone receptors by -phenylanthranilic acid derivatives: Structural and functional insights.

机构信息

From the New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand,

From the New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand.

出版信息

J Biol Chem. 2018 Apr 27;293(17):6530-6543. doi: 10.1074/jbc.RA117.001154. Epub 2018 Mar 9.

Abstract

The strigolactone (SL) family of plant hormones regulates a broad range of physiological processes affecting plant growth and development and also plays essential roles in controlling interactions with parasitic weeds and symbiotic fungi. Recent progress elucidating details of SL biosynthesis, signaling, and transport offers many opportunities for discovering new plant-growth regulators via chemical interference. Here, using high-throughput screening and downstream biochemical assays, we identified -phenylanthranilic acid derivatives as potent inhibitors of the SL receptors from petunia (DAD2), rice (OsD14), and (AtD14). Crystal structures of DAD2 and OsD14 in complex with inhibitors further provided detailed insights into the inhibition mechanism, and modeling of 19 other plant strigolactone receptors suggested that these compounds are active across a large range of plant species. Altogether, these results provide chemical tools for investigating SL signaling and further define a framework for structure-based approaches to design and validate optimized inhibitors of SL receptors for specific plant targets.

摘要

独脚金内酯(SL)是一类植物激素,调控着广泛的生理过程,影响植物生长和发育,同时在调控与寄生杂草和共生真菌的相互作用方面发挥着重要作用。阐明 SL 生物合成、信号转导和运输的最新进展为通过化学干扰发现新的植物生长调节剂提供了许多机会。在这里,我们使用高通量筛选和下游生化分析,鉴定出 - 苯丙氨酸衍生物是矮牵牛(DAD2)、水稻(OsD14)和 (AtD14)SL 受体的有效抑制剂。与抑制剂结合的 DAD2 和 OsD14 的晶体结构进一步提供了对抑制机制的详细了解,并且对其他 19 种植物独脚金内酯受体的建模表明,这些化合物在很大范围内对植物物种具有活性。总之,这些结果为研究 SL 信号转导提供了化学工具,并进一步定义了基于结构的方法的框架,以设计和验证针对特定植物靶标的 SL 受体的优化抑制剂。

相似文献

1
Inhibition of strigolactone receptors by -phenylanthranilic acid derivatives: Structural and functional insights.
J Biol Chem. 2018 Apr 27;293(17):6530-6543. doi: 10.1074/jbc.RA117.001154. Epub 2018 Mar 9.
3
Rice DWARF14 acts as an unconventional hormone receptor for strigolactone.
J Exp Bot. 2018 Apr 23;69(9):2355-2365. doi: 10.1093/jxb/ery014.
4
Flexibility of the petunia strigolactone receptor DAD2 promotes its interaction with signaling partners.
J Biol Chem. 2020 Mar 27;295(13):4181-4193. doi: 10.1074/jbc.RA119.011509. Epub 2020 Feb 17.
5
DAD2 is an α/β hydrolase likely to be involved in the perception of the plant branching hormone, strigolactone.
Curr Biol. 2012 Nov 6;22(21):2032-6. doi: 10.1016/j.cub.2012.08.007. Epub 2012 Sep 6.
6
Strigolactone perception and deactivation by a hydrolase receptor DWARF14.
Nat Commun. 2019 Jan 14;10(1):191. doi: 10.1038/s41467-018-08124-7.
7
Synthesis of Profluorescent Strigolactone Probes for Biochemical Studies.
Methods Mol Biol. 2021;2309:219-231. doi: 10.1007/978-1-0716-1429-7_17.
8
DWARF14 is a non-canonical hormone receptor for strigolactone.
Nature. 2016 Aug 25;536(7617):469-73. doi: 10.1038/nature19073. Epub 2016 Aug 1.
9
A petunia ABC protein controls strigolactone-dependent symbiotic signalling and branching.
Nature. 2012 Mar 7;483(7389):341-4. doi: 10.1038/nature10873.
10
Chemical screening of novel strigolactone agonists that specifically interact with DWARF14 protein.
Bioorg Med Chem Lett. 2019 Apr 1;29(7):938-942. doi: 10.1016/j.bmcl.2019.01.010. Epub 2019 Jan 11.

引用本文的文献

1
Effect of histidine covalent modification on strigolactone receptor activation and selectivity.
Biophys J. 2023 Apr 4;122(7):1219-1228. doi: 10.1016/j.bpj.2023.02.012. Epub 2023 Feb 16.
2
Emerging technologies for the chemical control of root parasitic weeds.
J Pestic Sci. 2022 Aug 20;47(3):101-110. doi: 10.1584/jpestics.D22-045.
3
Expansion of the Strigolactone Profluorescent Probes Repertory: The Right Probe for the Right Application.
Front Plant Sci. 2022 Jun 2;13:887347. doi: 10.3389/fpls.2022.887347. eCollection 2022.
4
Rapid analysis of strigolactone receptor activity in a mutant.
Plant Direct. 2022 Mar 25;6(3):e389. doi: 10.1002/pld3.389. eCollection 2022 Mar.
5
KARRIKIN UP-REGULATED F-BOX 1 (KUF1) imposes negative feedback regulation of karrikin and KAI2 ligand metabolism in .
Proc Natl Acad Sci U S A. 2022 Mar 15;119(11):e2112820119. doi: 10.1073/pnas.2112820119. Epub 2022 Mar 7.
10
Structural Analysis of Strigolactone-Related Gene Products.
Methods Mol Biol. 2021;2309:245-257. doi: 10.1007/978-1-0716-1429-7_19.

本文引用的文献

1
2
Methyl phenlactonoates are efficient strigolactone analogs with simple structure.
J Exp Bot. 2018 Apr 23;69(9):2319-2331. doi: 10.1093/jxb/erx438.
3
Simple β-lactones are potent irreversible antagonists for strigolactone receptors.
Cell Res. 2017 Dec;27(12):1525-1528. doi: 10.1038/cr.2017.105. Epub 2017 Aug 18.
4
Chemical genetics and strigolactone perception.
F1000Res. 2017 Jun 22;6:975. doi: 10.12688/f1000research.11379.1. eCollection 2017.
5
A Taylor-Made Design of Phenoxyfuranone-Type Strigolactone Mimic.
Front Plant Sci. 2017 Jun 20;8:936. doi: 10.3389/fpls.2017.00936. eCollection 2017.
6
Chemical intervention in plant sugar signalling increases yield and resilience.
Nature. 2016 Dec 22;540(7634):574-578. doi: 10.1038/nature20591. Epub 2016 Dec 14.
7
Comparative Protein Structure Modeling Using MODELLER.
Curr Protoc Protein Sci. 2016 Nov 1;86:2.9.1-2.9.37. doi: 10.1002/cpps.20.
8
An histidine covalent receptor and butenolide complex mediates strigolactone perception.
Nat Chem Biol. 2016 Oct;12(10):787-794. doi: 10.1038/nchembio.2147. Epub 2016 Aug 1.
9
DWARF14 is a non-canonical hormone receptor for strigolactone.
Nature. 2016 Aug 25;536(7617):469-73. doi: 10.1038/nature19073. Epub 2016 Aug 1.
10
Small-molecule antagonists of germination of the parasitic plant Striga hermonthica.
Nat Chem Biol. 2016 Sep;12(9):724-9. doi: 10.1038/nchembio.2129. Epub 2016 Jul 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验