Suppr超能文献

基于数字图像弹性层析成像的乳腺癌检测的有限元建模与验证。

Finite element modelling and validation for breast cancer detection using digital image elasto-tomography.

机构信息

University of Canterbury, 20 Kirkwood Ave, Upper Riccarton, Christchurch, 8041, New Zealand.

Tiro Medical Limited, Building Dg7, Dovedale Village, Dovedale Avenue, Ilam, Christchurch, 8041, New Zealand.

出版信息

Med Biol Eng Comput. 2018 Sep;56(9):1715-1729. doi: 10.1007/s11517-018-1804-5. Epub 2018 Mar 10.

Abstract

Finite element (FE) models are increasingly used to validate experimental data in breast cancer. This research constructed a biomechanical FE model for breast shaped phantoms used to develop and validate a mechanical vibration based screening system. Such models do not currently exist but would enhance development of this screening technology. Three phantoms were modelled: healthy, with 10 and 20 mm inclusions. The overall goal was to create models with enough accuracy to replace experimental phantoms in providing data to optimize diagnostic algorithms for digital image-based elasto-tomography (DIET) screening technologies. FE model results were validating against experimental DIET phantom data for over 4000 collected points on each model and phantom using cross-correlation coefficients between experimental simulated data and direct comparison. Results showed good to strong correlation ranging from 0.7 to 1.0 in all cases with over 90% having a value over 0.9. Magnitudes for each frame of the dynamic response also matched well, indicating that the material properties and geometry were accurate enough to provide this level of correlation. These results justify the use of FE model generated data for in silico diagnostic algorithm development testing. The overall modelling and validation approach is not overly complex, and thus generalizable to similar problems using mechanical properties of silicone phantoms, and might be extensible to human cases with further work. Graphical abstract Validate that dynamic displacements show that the model can be used in place of phantoms for rapid development of diagnostic algorithms that use surface motion to detect underlying mechanical properties.

摘要

有限元(FE)模型越来越多地用于验证乳腺癌的实验数据。本研究构建了用于开发和验证基于机械振动的筛选系统的乳房形状体模的生物力学 FE 模型。目前不存在此类模型,但会增强这种筛选技术的发展。建立了三个体模:健康体模、含有 10 和 20mm 夹杂物的体模。总体目标是创建具有足够准确性的模型,以替代实验体模,为基于数字图像的弹光断层扫描(DIET)筛选技术的诊断算法优化提供数据。FE 模型结果针对每个模型和体模的超过 4000 个采集点的实验 DIET 体模数据进行了验证,使用实验模拟数据和直接比较之间的互相关系数。结果表明,在所有情况下,相关性均良好到很强,范围从 0.7 到 1.0,超过 90%的相关性大于 0.9。动态响应的每个帧的幅度也匹配得很好,表明材料特性和几何形状足够准确,可提供这种相关性水平。这些结果证明了使用 FE 模型生成的数据可用于模拟诊断算法开发测试。整体建模和验证方法并不复杂,因此可推广到使用硅树脂体模机械性能的类似问题,并且可以通过进一步的工作扩展到人体案例。示意图验证动态位移表明,该模型可用于替代体模,以便快速开发使用表面运动来检测潜在机械特性的诊断算法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验