Suppr超能文献

细菌叶绿素同二聚体中的激子相互作用促进电荷转移:人工光合作用特殊对的新方法。

Excitonic Interactions in Bacteriochlorin Homo-Dyads Enable Charge Transfer: A New Approach to the Artificial Photosynthetic Special Pair.

机构信息

Department of Chemistry , Case Western Reserve University , Cleveland , Ohio 44106 , United States.

Department of Chemistry and Biochemistry , University of Maryland , Baltimore County, Baltimore , Maryland 21250 , United States.

出版信息

J Phys Chem B. 2018 Apr 12;122(14):4131-4140. doi: 10.1021/acs.jpcb.8b02123. Epub 2018 Mar 27.

Abstract

Excitonically coupled bacteriochlorin (BC) dimers constitute a primary electron donor (special pair) in bacterial photosynthesis and absorbing units in light-harvesting antenna. However, the exact nature of the excited state of these dyads is still not fully understood. Here, we report a detailed spectroscopic and computational investigation of a series of symmetrical bacteriochlorin dimers, where the bacteriochlorins are connected either directly or by a phenylene bridge of variable length. The excited state of these dyads is quenched in high-dielectric solvents, which we attribute to photoinduced charge transfer. The mixing of charge transfer with the excitonic state causes accelerated (within 41 ps) decay of the excited state for the directly linked dyad, which is reduced by orders of magnitude with each additional phenyl ring separating the bacteriochlorins. These results highlight the origins of the excited-state dynamics in symmetric BC dyads and provide a new model for studying the primary processes in photosynthesis and for the development of artificial, biomimetic systems for solar energy conversion.

摘要

激子耦合的细菌叶绿素(BC)二聚体是细菌光合作用中的一个主要电子供体(特殊对),也是光捕获天线中的吸收单元。然而,这些二聚体的激发态的确切性质仍未完全了解。在这里,我们报告了一系列对称细菌叶绿素二聚体的详细光谱和计算研究,其中细菌叶绿素通过直接连接或不同长度的亚苯基桥连接。这些二聚体的激发态在高介电溶剂中被猝灭,我们将其归因于光致电荷转移。电荷转移与激子态的混合导致直接连接的二聚体的激发态迅速(在 41 ps 内)衰减,而每个额外的苯环都会使细菌叶绿素之间的分离程度降低几个数量级。这些结果突出了对称 BC 二聚体中激发态动力学的起源,并为研究光合作用中的初始过程以及开发用于太阳能转换的人工、仿生系统提供了一个新模型。

相似文献

1
Excitonic Interactions in Bacteriochlorin Homo-Dyads Enable Charge Transfer: A New Approach to the Artificial Photosynthetic Special Pair.
J Phys Chem B. 2018 Apr 12;122(14):4131-4140. doi: 10.1021/acs.jpcb.8b02123. Epub 2018 Mar 27.
3
Synthesis and excited-state photodynamics of a chlorin-bacteriochlorin dyad--through-space versus through-bond energy transfer in tetrapyrrole arrays.
Photochem Photobiol. 2008 May-Jun;84(3):786-801. doi: 10.1111/j.1751-1097.2007.00258.x. Epub 2008 Jan 15.
7
Energy and electron transfer in beta-alkynyl-linked porphyrin-[60]fullerene dyads.
J Phys Chem B. 2006 Jul 27;110(29):14155-66. doi: 10.1021/jp061844t.
10
Porphyrin-fullerene linked systems as artificial photosynthetic mimics.
Org Biomol Chem. 2004 May 21;2(10):1425-33. doi: 10.1039/b403024a. Epub 2004 Apr 26.

引用本文的文献

1
De novo design of proteins housing excitonically coupled chlorophyll special pairs.
Nat Chem Biol. 2024 Jul;20(7):906-915. doi: 10.1038/s41589-024-01626-0. Epub 2024 Jun 3.
2
design of energy transfer proteins housing excitonically coupled chlorophyll special pairs.
Res Sq. 2023 Apr 21:rs.3.rs-2736786. doi: 10.21203/rs.3.rs-2736786/v1.
3
Charge transfer as a mechanism for chlorophyll fluorescence concentration quenching.
Proc Natl Acad Sci U S A. 2023 Jan 31;120(5):e2210811120. doi: 10.1073/pnas.2210811120. Epub 2023 Jan 23.

本文引用的文献

1
Symmetrical and Nonsymmetrical Meso-Meso Directly Linked Hydroporphyrin Dyads: Synthesis and Photochemical Properties.
Inorg Chem. 2018 Mar 19;57(6):2977-2988. doi: 10.1021/acs.inorgchem.7b02200. Epub 2017 Nov 15.
3
Bacteriochlorin Dyads as Solvent Polarity Dependent Near-Infrared Fluorophores and Reactive Oxygen Species Photosensitizers.
Org Lett. 2016 Sep 16;18(18):4590-3. doi: 10.1021/acs.orglett.6b02237. Epub 2016 Sep 7.
4
Light Absorption and Energy Transfer in the Antenna Complexes of Photosynthetic Organisms.
Chem Rev. 2017 Jan 25;117(2):249-293. doi: 10.1021/acs.chemrev.6b00002. Epub 2016 Jul 18.
5
Mixing of exciton and charge-transfer states in light-harvesting complex Lhca4.
Phys Chem Chem Phys. 2016 Jul 28;18(28):19368-77. doi: 10.1039/c6cp02225a. Epub 2016 Jul 4.
6
Quantum Coherence in Photosynthesis for Efficient Solar Energy Conversion.
Nat Phys. 2014 Sep 1;10(9):676-682. doi: 10.1038/nphys3017.
8
Effects of Strong Electronic Coupling in Chlorin and Bacteriochlorin Dyads.
J Phys Chem A. 2016 Jan 28;120(3):379-95. doi: 10.1021/acs.jpca.5b10686. Epub 2016 Jan 14.
9
Ultrafast Photoinduced Symmetry-Breaking Charge Separation and Electron Sharing in Perylenediimide Molecular Triangles.
J Am Chem Soc. 2015 Oct 21;137(41):13236-9. doi: 10.1021/jacs.5b08386. Epub 2015 Oct 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验