Department of Chemistry and Biochemistry, University of Maryland, Baltimore County , 1000 Hilltop Circle, Baltimore, Maryland 21250, United States.
J Org Chem. 2013 Nov 1;78(21):10678-91. doi: 10.1021/jo4016858. Epub 2013 Oct 14.
Design, synthesis, and optical properties of a series of novel chlorin-bacteriochlorin energy transfer dyads are described. Each dyad is composed of a common red-absorbing (645-646 nm) chlorin, as an energy donor, and a different near-IR emitting bacteriochlorin, as an energy acceptor. Each bacteriochlorin acceptor is equipped with a different set of auxochromes, so that each of them emits at a different wavelength. Dyads exhibit an efficient energy transfer (≥0.77) even for chlorin-bacteriochlorin pairs with large (up to 122 nm) separation between donor emission and acceptor absorption. Excitation of the chlorin donor results in relatively strong emission of the bacteriochlorin acceptor, with a quantum yield Φf range of 0.155-0.23 in toluene and 0.12-0.185 in DMF. The narrow, tunable emission band of bacteriochlorins enables the selection of a series of three dyads with well-resolved emissions at 732, 760, and 788 nm, and common excitation at 645 nm. Selected dyads have been also converted into bioconjugatable N-succinamide ester derivatives. The optical properties of the described dyads make them promising candidates for development of a family of near-IR fluorophores for simultaneous imaging of multiple targets, where the whole set of fluorophores can be excited with the common wavelength, and fluorescence from each can be independently detected.
描述了一系列新型叶绿素-细菌叶绿素能量转移二聚体的设计、合成和光学性质。每个二聚体由常见的红光吸收(645-646nm)叶绿素作为能量供体和不同的近红外发射细菌叶绿素作为能量受体组成。每个细菌叶绿素受体都配备了不同的助色团,因此它们各自在不同的波长处发射。即使对于供体发射和受体吸收之间存在较大(高达 122nm)分离的叶绿素-细菌叶绿素对,二聚体也表现出有效的能量转移(≥0.77)。激发叶绿素供体导致细菌叶绿素受体的相对强发射,在甲苯中的量子产率 Φf 范围为 0.155-0.23,在 DMF 中的量子产率 Φf 范围为 0.12-0.185。细菌叶绿素的窄、可调发射带使得能够选择一系列三个二聚体,它们在 732、760 和 788nm 处具有良好分辨的发射,并且在 645nm 处共同激发。所选的二聚体也已转化为可生物共轭的 N-琥珀酰亚胺酯衍生物。所描述的二聚体的光学性质使它们成为开发一系列近红外荧光团的有前途的候选物,用于同时对多个靶标的成像,其中整个荧光团集可以用共同的波长激发,并且可以独立地检测每个荧光团的荧光。