Suppr超能文献

Change in the activity of Cl-,HCO3(-)-ATPase in microsome fraction during early development of the sea urchin, Hemicentrotus pulcherrimus.

作者信息

Mitsunaga K, Fujino Y, Yasumasu I

出版信息

J Biochem. 1986 Dec;100(6):1607-15. doi: 10.1093/oxfordjournals.jbchem.a121868.

Abstract

In sea urchin embryos, primary mesenchyme cells, descendants from micromeres produced at the 16-cell stage, form spicules or CaCO3 deposits in their skeletal vacuoles, at the post-gastrula stage. Micromeres isolated at the 16-cell stage also differentiate into spicule-forming cells during their culture at the same time schedule as in the embryos. The present study was planned to observe change in the activity of Cl-,HCO3(-)-ATPase, which was expected to contribute to the carbonate supply for CaCO3 deposition, during development. ATP-hydrolysis in the microsome fraction, obtained from embryos of the sea urchin, Hemicentrotus pulcherrimus, and from micromere-derived cells in culture was stimulated by Cl- and HCO3- in the presence of ouabain and EGTA. The ATP-hydrolysis was inhibited by ethacrynic acid, an inhibitor of Cl-,HCO3(-)-ATPase. The activity of Cl-,HCO3(-)-ATPase in embryos and in micromere-derived cells increased during development, keeping pace with the rate of calcium deposition in spicules. Formation of calcified spicules in the cultured micromere-derived cells was inhibited by ethacrynic acid. These results indicate that Cl-,HCO3(-)-ATPase plays an important role in the mechanism of CaCO3 deposition in the primary mesenchyme cells.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验