Ming Hsieh Department of Electrical Engineering , University of Southern California , Los Angeles , California 90089 , United States.
National Institute for Materials Science , 1-1 Namiki , Tsukuba 305-0044 , Japan.
ACS Appl Mater Interfaces. 2018 Apr 4;10(13):11101-11107. doi: 10.1021/acsami.7b16634. Epub 2018 Mar 22.
Scanning thermal microscopy measurements reveal a significant thermal benefit of including a high thermal conductivity hexagonal boron nitride (h-BN) heat-spreading layer between graphene and either a SiO/Si substrate or a 100 μm thick Corning flexible Willow glass (WG) substrate. At the same power density, an 80 nm thick h-BN layer on the silicon substrate can yield a factor of 2.2 reduction of the hot spot temperature, whereas a 35 nm thick h-BN layer on the WG substrate is sufficient to obtain a factor of 4.1 reduction. The larger effect of the h-BN heat spreader on WG than on SiO/Si is attributed to a smaller effective heat transfer coefficient per unit area for three-dimensional heat conduction into the thick, low-thermal conductivity WG substrate than for one-dimensional heat conduction through the thin oxide layer on silicon. Consequently, the h-BN lateral heat-spreading length is much larger on WG than on SiO/Si, resulting in a larger degree of temperature reduction.
扫描热显微镜测量显示,在石墨烯和 SiO/Si 衬底或 100μm 厚的康宁柔性 Willow 玻璃(WG)衬底之间包含高热导率六方氮化硼(h-BN)散热层可显著提高热性能。在相同的功率密度下,硅衬底上 80nm 厚的 h-BN 层可使热点温度降低 2.2 倍,而 WG 衬底上 35nm 厚的 h-BN 层足以使温度降低 4.1 倍。与 SiO/Si 相比,h-BN 散热片对 WG 的影响更大,这归因于通过厚的、低热导率 WG 衬底进行三维热传导的单位面积有效热传递系数比通过硅上的薄氧化层进行一维热传导的有效热传递系数小。因此,h-BN 在 WG 上的横向散热长度比在 SiO/Si 上大得多,从而导致更大程度的温度降低。