Department of Physics, University of Illinois at Chicago, Chicago, IL 60607.
ChemMatCARS, Center for Advanced Radiation Sources, University of Chicago, Chicago, IL 60637.
Proc Natl Acad Sci U S A. 2019 Sep 10;116(37):18227-18232. doi: 10.1073/pnas.1701389115. Epub 2018 Mar 12.
During solvent extraction, amphiphilic extractants assist the transport of metal ions across the liquid-liquid interface between an aqueous ionic solution and an organic solvent. Investigations of the role of the interface in ion transport challenge our ability to probe fast molecular processes at liquid-liquid interfaces on nanometer-length scales. Recent development of a thermal switch for solvent extraction has addressed this challenge, which has led to the characterization by X-ray surface scattering of interfacial intermediate states in the extraction process. Here, we review and extend these earlier results. We find that trivalent rare earth ions, Y(III) and Er(III), combine with bis(hexadecyl) phosphoric acid (DHDP) extractants to form inverted bilayer structures at the interface; these appear to be condensed phases of small ion-extractant complexes. The stability of this unconventional interfacial structure is verified by molecular dynamics simulations. The ion-extractant complexes at the interface are an intermediate state in the extraction process, characterizing the moment at which ions have been transported across the aqueous-organic interface, but have not yet been dispersed in the organic phase. In contrast, divalent Sr(II) forms an ion-extractant complex with DHDP that leaves it exposed to the water phase; this result implies that a second process that transports Sr(II) across the interface has yet to be observed. Calculations demonstrate that the budding of reverse micelles formed from interfacial Sr(II) ion-extractant complexes could transport Sr(II) across the interface. Our results suggest a connection between the observed interfacial structures and the extraction mechanism, which ultimately affects the extraction selectivity and kinetics.
在溶剂萃取中,两亲萃取剂协助金属离子在水相离子溶液和有机溶剂之间的液-液界面上传输。界面在离子传输中的作用的研究挑战了我们在纳米尺度上探测液-液界面快速分子过程的能力。最近开发的溶剂萃取热开关解决了这一挑战,这导致了萃取过程中界面中间态的 X 射线表面散射的特征化。在这里,我们回顾和扩展了这些早期的结果。我们发现,三价稀土离子 Y(III) 和 Er(III) 与双(十六烷基)磷酸(DHDP)萃取剂结合,在界面上形成反相双层结构;这些似乎是小离子-萃取剂配合物的凝聚相。这种非常规界面结构的稳定性通过分子动力学模拟得到了验证。界面处的离子-萃取剂配合物是萃取过程中的中间态,它描述了离子已经穿过水-有机界面但尚未在有机相分散的时刻。相比之下,二价 Sr(II) 与 DHDP 形成离子-萃取剂配合物,使其暴露于水相;这一结果表明,尚未观察到将 Sr(II) 穿过界面的第二个过程。计算表明,由界面 Sr(II) 离子-萃取剂配合物形成的反向胶束的萌芽可以将 Sr(II) 穿过界面。我们的结果表明,观察到的界面结构与萃取机制之间存在联系,这最终影响萃取的选择性和动力学。