Suppr超能文献

子宫颈癌中蛋白质表达分析以寻找潜在治疗靶点

Protein Expression Analysis in Uterine Cervical Cancer for Potential Targets in Treatment.

作者信息

Blancas Sugela, Medina-Berlanga Rogelio, Ortíz-García Liliana, Loredo-Ramírez Alfredo, Santos Leticia

机构信息

División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, A.C. (IPICYT), San Luis Potosí, Mexico.

Centro de Ciencias de la Salud, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico.

出版信息

Pathol Oncol Res. 2019 Apr;25(2):493-501. doi: 10.1007/s12253-018-0401-0. Epub 2018 Mar 12.

Abstract

Specific markers in lesions of the human uterine cervix cancer (UCC) are still needed for prognostic, diagnostic and/or therapeutic purposes. In this study we evaluated key molecules at protein level between normal epithelium, cervical intraepithelial neoplasia (CIN1-3) and invasive cancer of a group of molecules previously reported at mRNA level. For that purpose, human formalin-fixed paraffin embedded tissue microarrays (TMAs) were constructed containing 205 Mexican tissue core specimens. Immunohistochemistry and quantitative analysis of histological staining was performed against twenty-two distinct proteins for each core and the processing platform ImageJ. In the progression of the disease we found key statistical differences for the proteins SEL1, Notch3 and SOCS3. High expressions of SEL1L, Notch3 and SOCS3 have potential value to increase the prognostic of UCC in combination with markers such as p16. This study identified key drivers in cervical carcinogenesis that should be evaluated for the development of UCC therapies.

摘要

出于预后、诊断和/或治疗目的,仍需要人子宫颈癌(UCC)病变中的特定标志物。在本研究中,我们在蛋白质水平评估了一组先前在mRNA水平报道的分子,比较了正常上皮、宫颈上皮内瘤变(CIN1 - 3)和浸润性癌之间的关键分子。为此,构建了包含205个墨西哥组织芯标本的人福尔马林固定石蜡包埋组织微阵列(TMA)。针对每个芯以及处理平台ImageJ,对22种不同蛋白质进行了免疫组织化学和组织学染色定量分析。在疾病进展过程中,我们发现SEL1、Notch3和SOCS3蛋白存在关键统计学差异。SEL1L、Notch3和SOCS3的高表达与p16等标志物联合使用时,对提高UCC的预后具有潜在价值。本研究确定了子宫颈癌发生中的关键驱动因素,应在UCC治疗开发中对其进行评估。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验