Suppr超能文献

整合基因组学与功能验证确定三阴性乳腺癌中恶性细胞的特异性依赖关系。

Integrated genomics and functional validation identifies malignant cell specific dependencies in triple negative breast cancer.

作者信息

Patel Nirmesh, Weekes Daniel, Drosopoulos Konstantinos, Gazinska Patrycja, Noel Elodie, Rashid Mamun, Mirza Hasan, Quist Jelmar, Brasó-Maristany Fara, Mathew Sumi, Ferro Riccardo, Pereira Ana Mendes, Prince Cynthia, Noor Farzana, Francesch-Domenech Erika, Marlow Rebecca, de Rinaldis Emanuele, Grigoriadis Anita, Linardopoulos Spiros, Marra Pierfrancesco, Tutt Andrew N J

机构信息

Breast Cancer Now Research Unit, King's College London, London, SE1 9RT, UK.

School of Cancer and Pharmaceutical Sciences, King's Health Partners AHSC, Faculty of Life Sciences and Medicine, King's College London, London, WC2R 2LS, UK.

出版信息

Nat Commun. 2018 Mar 13;9(1):1044. doi: 10.1038/s41467-018-03283-z.

Abstract

Triple negative breast cancers (TNBCs) lack recurrent targetable driver mutations but demonstrate frequent copy number aberrations (CNAs). Here, we describe an integrative genomic and RNAi-based approach that identifies and validates gene addictions in TNBCs. CNAs and gene expression alterations are integrated and genes scored for pre-specified target features revealing 130 candidate genes. We test functional dependence on each of these genes using RNAi in breast cancer and non-malignant cells, validating malignant cell selective dependence upon 37 of 130 genes. Further analysis reveals a cluster of 13 TNBC addiction genes frequently co-upregulated that includes genes regulating cell cycle checkpoints, DNA damage response, and malignant cell selective mitotic genes. We validate the mechanism of addiction to a potential drug target: the mitotic kinesin family member C1 (KIFC1/HSET), essential for successful bipolar division of centrosome-amplified malignant cells and develop a potential selection biomarker to identify patients with tumors exhibiting centrosome amplification.

摘要

三阴性乳腺癌(TNBC)缺乏常见的可靶向驱动突变,但显示出频繁的拷贝数畸变(CNA)。在此,我们描述了一种基于综合基因组学和RNA干扰的方法,该方法可识别并验证TNBC中的基因成瘾性。整合CNA和基因表达改变,并根据预先指定的靶标特征对基因进行评分,从而揭示出130个候选基因。我们在乳腺癌和非恶性细胞中使用RNA干扰测试了对这些基因中每一个的功能依赖性,验证了130个基因中有37个基因对恶性细胞具有选择性依赖性。进一步分析揭示了一组13个经常共同上调的TNBC成瘾基因,其中包括调节细胞周期检查点、DNA损伤反应的基因以及恶性细胞选择性有丝分裂基因。我们验证了对一种潜在药物靶点的成瘾机制:有丝分裂驱动蛋白家族成员C1(KIFC1/HSET),它对于中心体扩增的恶性细胞成功进行双极分裂至关重要,并开发了一种潜在的选择生物标志物,以识别患有表现出中心体扩增的肿瘤的患者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2d41/5849766/72fe65c92e42/41467_2018_3283_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验