Chernoff Ellen A G, Sato Kazuna, Salfity Hai V N, Sarria Deborah A, Belecky-Adams Teri
Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States.
Front Cell Neurosci. 2018 Feb 27;12:45. doi: 10.3389/fncel.2018.00045. eCollection 2018.
The differentiated state of spinal cord ependymal cells in regeneration-competent amphibians varies between a constitutively active state in what is essentially a developing organism, the tadpole of the frog , and a quiescent, activatable state in a slowly growing adult salamander , the Axolotl. Ependymal cells are epithelial in intact spinal cord of all vertebrates. After transection, body region ependymal epithelium in both and the Axolotl disorganizes for regenerative outgrowth (gap replacement). Injury-reactive ependymal cells serve as a stem/progenitor cell population in regeneration and reconstruct the central canal. Expression patterns of mRNA and protein for the stem/progenitor cell-maintenance Notch signaling pathway mRNA-binding protein (msi) change with life stage and regeneration competence. Msi-1 is missing (immunohistochemistry), or at very low levels (polymerase chain reaction, PCR), in both intact regeneration-competent adult Axolotl cord and intact non-regeneration-competent tadpole (Nieuwkoop and Faber stage 62+, NF 62+). The critical correlation for successful regeneration is expression/upregulation after injury in the ependymal outgrowth and stump-region ependymal cells. and isoforms were cloned for the Axolotl as well as previously unknown isoforms of . Intact spinal cord ependymal cells show a loss of expression between regeneration-competent (NF 50-53) and non-regenerating stages (NF 62+) and in post-metamorphosis froglets, while displays a lower molecular weight isoform in non-regenerating cord. In the Axolotl, embryos and juveniles maintain Msi-1 expression in the intact cord. In the adult Axolotl, Msi-1 is absent, but upregulates after injury. Msi-2 levels are more variable among Axolotl life stages: rising between late tailbud embryos and juveniles and decreasing in adult cord. Cultures of regeneration-competent tadpole cord and injury-responsive adult Axolotl cord ependymal cells showed an identical growth factor response. Epidermal growth factor (EGF) maintains mesenchymal outgrowth , the cells are proliferative and maintain expression. Non-regeneration competent ependymal cells, NF 62+, failed to attach or grow well in EGF+ medium. Ependymal Msi-1 expression and is a strong indicator of regeneration competence in the amphibian spinal cord.
在具有再生能力的两栖动物中,脊髓室管膜细胞的分化状态有所不同,在本质上处于发育阶段的生物体(青蛙的蝌蚪)中,它们处于组成性激活状态,而在生长缓慢的成年蝾螈(美西螈)中则处于静止、可激活状态。在所有脊椎动物完整的脊髓中,室管膜细胞都是上皮细胞。横切后,青蛙和蝾螈身体部位的室管膜上皮都会解体以实现再生性生长(填补缺口)。损伤反应性室管膜细胞在再生过程中充当干细胞/祖细胞群体,并重建中央管。用于维持干细胞/祖细胞的Notch信号通路mRNA结合蛋白(msi)的mRNA和蛋白质表达模式会随着生命阶段和再生能力而变化。在具有再生能力的成年美西螈完整脊髓以及不具有再生能力的青蛙蝌蚪(Nieuwkoop和Faber第62 +阶段,NF 62 +)的完整脊髓中,Msi-1缺失(免疫组织化学法)或水平极低(聚合酶链反应,PCR)。成功再生的关键关联因素是损伤后室管膜生长部位和残端区域室管膜细胞中Msi的表达/上调。已经克隆了美西螈的Msi-1和Msi-2亚型以及之前未知的Msi亚型。青蛙完整脊髓的室管膜细胞在具有再生能力(NF 50 - 53)和无再生能力阶段(NF 62 +)之间以及变态后的幼蛙中显示出Msi表达缺失,而在无再生能力的脊髓中,Msi显示出分子量较低的亚型。在美西螈中,胚胎和幼体在完整脊髓中维持Msi-1表达。在成年美西螈中,Msi-1不存在,但损伤后会上调。Msi-2水平在美西螈的生命阶段中变化更大:在尾芽后期胚胎和幼体之间上升而在成年脊髓中下降。具有再生能力的青蛙蝌蚪脊髓培养物和损伤反应性成年美西螈脊髓室管膜细胞显示出相同的生长因子反应特性。表皮生长因子(EGF)维持间充质生长,细胞具有增殖能力并维持Msi表达。不具有再生能力的青蛙(NF 62 +)室管膜细胞在EGF +培养基中无法附着或良好生长。室管膜Msi-1的表达是两栖动物脊髓再生能力的有力指标。