Shi Baoku, Wang Yunbo, Meng Bo, Zhong Shangzhi, Sun Wei
Key Laboratory for Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China.
Key Laboratory of Grassland Resources, Ministry of Education, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China.
Front Plant Sci. 2018 Feb 27;9:254. doi: 10.3389/fpls.2018.00254. eCollection 2018.
It is not clear yet how extreme drought and nitrogen (N) deposition influence grassland ecosystem functions when they are considered together, especially in complex field conditions. To explore the response of the meadow ecosystem to manipulated extreme drought (45 days), N addition and their interaction, we measured leaf photosynthetic characteristics, aboveground phytomass on the community level and ecosystem C exchange in different treatments at the middle and the end of the drought period. The extreme drought treatment decreased the leaf net CO assimilation rate and ecosystem C exchange [gross ecosystem productivity (GEP), ecosystem respiration and net ecosystem CO exchange]. In contrast, the N addition treatment increased aboveground phytomass, GEP and net ecosystem CO exchange. The effects of N addition on the drought susceptibility of the meadow ecosystem varied with drought severity. The N addition treatment alleviated drought-induced suppression of CO exchange at the leaf and ecosystem levels in the middle of the drought period, whereas it exacerbated drought-induced suppression of the CO exchange and aboveground phytomass on the community level at the end of the drought period. Given that dominance by is a characteristic of the studied ecosystem, knowledge of the traits of and its response to multiple global change drivers will be crucial for predicting future ecosystem functions. Furthermore, increasing N deposition may affect the response of the meadow ecosystem to further droughts by increasing carbon allocation to roots and therefore root-shoot ratios.
目前尚不清楚极端干旱和氮(N)沉降共同作用时如何影响草地生态系统功能,尤其是在复杂的田间条件下。为了探究草甸生态系统对人工控制的极端干旱(45天)、施氮及其相互作用的响应,我们在干旱期中期和末期测量了不同处理下的叶片光合特性、群落水平的地上植物生物量以及生态系统碳交换。极端干旱处理降低了叶片净CO同化率和生态系统碳交换[总生态系统生产力(GEP)、生态系统呼吸和净生态系统CO交换]。相反,施氮处理增加了地上植物生物量、GEP和净生态系统CO交换。施氮对草甸生态系统干旱敏感性的影响随干旱严重程度而变化。在干旱期中期,施氮处理缓解了干旱对叶片和生态系统水平CO交换的抑制作用,而在干旱期末期,它加剧了干旱对群落水平CO交换和地上植物生物量的抑制作用。鉴于[某种植物名称]占优势是所研究生态系统的一个特征,了解[某种植物名称]的特性及其对多种全球变化驱动因素的响应对于预测未来生态系统功能至关重要。此外,增加氮沉降可能会通过增加碳向根系的分配从而增加根冠比,影响草甸生态系统对进一步干旱的响应。