C4植物叶片中的光合作用与氮素关系
Photosynthesis and nitrogen relationships in leaves of C plants.
作者信息
Evans John R
机构信息
Division of Plant Industry, CSIRO, G.P.O. Box 1600, 2601, Canberra, A.C.T., Australia.
出版信息
Oecologia. 1989 Jan;78(1):9-19. doi: 10.1007/BF00377192.
The photosynthetic capacity of leaves is related to the nitrogen content primarily bacause the proteins of the Calvin cycle and thylakoids represent the majority of leaf nitrogen. To a first approximation, thylakoid nitrogen is proportional to the chlorophyll content (50 mol thylakoid N mol Chl). Within species there are strong linear relationships between nitrogen and both RuBP carboxylase and chlorophyll. With increasing nitrogen per unit leaf area, the proportion of total leaf nitrogen in the thylakoids remains the same while the proportion in soluble protein increases. In many species, growth under lower irradiance greatly increases the partitioning of nitrogen into chlorophyll and the thylakoids, while the electron transport capacity per unit of chlorophyll declines. If growth irradiance influences the relationship between photosynthetic capacity and nitrogen content, predicting nitrogen distribution between leaves in a canopy becomes more complicated. When both photosynthetic capacity and leaf nitrogen content are expressed on the basis of leaf area, considerable variation in the photosynthetic capacity for a given leaf nitrogen content is found between species. The variation reflects different strategies of nitrogen partitioning, the electron transport capacity per unit of chlorophyll and the specific activity of RuBP carboxylase. Survival in certain environments clearly does not require maximising photosynthetic capacity for a given leaf nitrogen content. Species that flourish in the shade partition relatively more nitrogen into the thylakoids, although this is associated with lower photosynthetic capacity per unit of nitrogen.
叶片的光合能力主要与氮含量有关,这是因为卡尔文循环和类囊体中的蛋白质占叶片氮的大部分。初步估算,类囊体氮与叶绿素含量成正比(每摩尔叶绿素含50摩尔类囊体氮)。在物种内部,氮与核酮糖-1,5-二磷酸羧化酶(RuBP羧化酶)及叶绿素之间都存在很强的线性关系。随着单位叶面积氮含量的增加,类囊体中总叶氮的比例保持不变,而可溶性蛋白质中的比例增加。在许多物种中,在较低光照强度下生长会大大增加氮向叶绿素和类囊体的分配,而单位叶绿素的电子传递能力则下降。如果生长光照强度影响光合能力与氮含量之间的关系,那么预测冠层中叶片间的氮分布就会变得更加复杂。当光合能力和叶氮含量都以叶面积为基础表示时,对于给定的叶氮含量,不同物种间的光合能力存在相当大的差异。这种差异反映了氮分配策略、单位叶绿素的电子传递能力以及RuBP羧化酶的比活性的不同。在某些环境中生存显然并不需要在给定叶氮含量的情况下使光合能力最大化。在阴凉处生长旺盛的物种会将相对更多的氮分配到类囊体中,尽管这与单位氮较低的光合能力相关。