Suppr超能文献

通过药物靶向支架蛋白 FRS2α 的豆蔻酰化来抑制 FGF/FGFR 介导的致癌信号和肿瘤进展。

Pharmacologically targeting the myristoylation of the scaffold protein FRS2α inhibits FGF/FGFR-mediated oncogenic signaling and tumor progression.

机构信息

From the Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, and.

the Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas 77030.

出版信息

J Biol Chem. 2018 Apr 27;293(17):6434-6448. doi: 10.1074/jbc.RA117.000940. Epub 2018 Mar 14.

Abstract

Fibroblast growth factor (FGF)/FGF receptor (FGFR) signaling facilitates tumor initiation and progression. Although currently approved inhibitors of FGFR kinase have shown therapeutic benefit in clinical trials, overexpression or mutations of FGFRs eventually confer drug resistance and thereby abrogate the desired activity of kinase inhibitors in many cancer types. In this study, we report that loss of myristoylation of fibroblast growth factor receptor substrate 2 (FRS2α), a scaffold protein essential for FGFR signaling, inhibits FGF/FGFR-mediated oncogenic signaling and FGF10-induced tumorigenesis. Moreover, a previously synthesized myristoyl-CoA analog, B13, which targets the activity of -myristoyltransferases, suppressed FRS2α myristoylation and decreased the phosphorylation with mild alteration of FRS2α localization at the cell membrane. B13 inhibited oncogenic signaling induced by WT FGFRs or their drug-resistant mutants (FGFRs). B13 alone or in combination with an FGFR inhibitor suppressed FGF-induced WT FGFR- or FGFR-initiated phosphoinositide 3-kinase (PI3K) activity or MAPK signaling, inducing cell cycle arrest and thereby inhibiting cell proliferation and migration in several cancer cell types. Finally, B13 significantly inhibited the growth of xenograft tumors without pathological toxicity to the liver, kidney, or lung In summary, our study suggests a possible therapeutic approach for inhibiting FGF/FGFR-mediated cancer progression and drug-resistant FGF/FGFR mutants.

摘要

成纤维细胞生长因子(FGF)/成纤维细胞生长因子受体(FGFR)信号促进肿瘤的发生和发展。虽然目前批准的 FGFR 激酶抑制剂在临床试验中显示出了治疗益处,但 FGFR 的过表达或突变最终会导致耐药性,从而使许多癌症类型中激酶抑制剂的预期活性丧失。在这项研究中,我们报告说,成纤维细胞生长因子受体底物 2(FRS2α)的豆蔻酰化丧失,FRS2α 是 FGFR 信号所必需的支架蛋白,可抑制 FGF/FGFR 介导的致癌信号和 FGF10 诱导的肿瘤发生。此外,先前合成的豆蔻酰 CoA 类似物 B13,其靶向 -豆蔻酰转移酶的活性,抑制 FRS2α 的豆蔻酰化并降低磷酸化,同时对细胞膜上 FRS2α 的定位仅有轻微改变。B13 抑制 WT FGFR 或其耐药突变体(FGFRs)诱导的致癌信号。B13 单独或与 FGFR 抑制剂联合使用可抑制 FGF 诱导的 WT FGFR 或 FGFR 启动的磷酸肌醇 3-激酶(PI3K)活性或 MAPK 信号,诱导细胞周期停滞,从而抑制几种癌细胞类型的细胞增殖和迁移。最后,B13 显著抑制了异种移植肿瘤的生长,而对肝脏、肾脏或肺没有病理性毒性。总之,我们的研究表明了一种可能的治疗方法,用于抑制 FGF/FGFR 介导的癌症进展和耐药性的 FGF/FGFR 突变体。

相似文献

2
Myristoylation-Dependent Palmitoylation of the Receptor Tyrosine Kinase Adaptor FRS2α.
Biochemistry. 2019 Jun 25;58(25):2809-2813. doi: 10.1021/acs.biochem.9b00299. Epub 2019 Jun 11.
4
Amplification of FRS2 and activation of FGFR/FRS2 signaling pathway in high-grade liposarcoma.
Cancer Res. 2013 Feb 15;73(4):1298-307. doi: 10.1158/0008-5472.CAN-12-2086. Epub 2013 Feb 7.
9
Ternary complex formation of EphA4, FGFR and FRS2α plays an important role in the proliferation of embryonic neural stem/progenitor cells.
Genes Cells. 2010 Mar;15(3):297-311. doi: 10.1111/j.1365-2443.2010.01391.x. Epub 2010 Feb 24.
10

引用本文的文献

1
Protein lipidation in the tumor microenvironment: enzymology, signaling pathways, and therapeutics.
Mol Cancer. 2025 May 7;24(1):138. doi: 10.1186/s12943-025-02309-7.
2
Inhibition of N-myristoyltransferase activity promotes androgen receptor degradation in prostate cancer.
Prostate. 2024 Feb;84(3):254-268. doi: 10.1002/pros.24645. Epub 2023 Oct 31.
4
Protein acylation: mechanisms, biological functions and therapeutic targets.
Signal Transduct Target Ther. 2022 Dec 29;7(1):396. doi: 10.1038/s41392-022-01245-y.
5
Discovery of a small molecule ligand of FRS2 that inhibits invasion and tumor growth.
Cell Oncol (Dordr). 2023 Apr;46(2):331-356. doi: 10.1007/s13402-022-00753-x. Epub 2022 Dec 10.
6
8
Maintenance Therapy with Pembrolizumab after Platinum-Doublet Chemotherapy Leading to Hyperprogression in a Patient with Metastatic Bladder Cancer.
Asia Pac J Oncol Nurs. 2021 Aug 27;8(5):586-590. doi: 10.4103/apjon.apjon-2142. eCollection 2021 Sep-Oct.
9
A Not-So-Ancient Grease History: Click Chemistry and Protein Lipid Modifications.
Chem Rev. 2021 Jun 23;121(12):7178-7248. doi: 10.1021/acs.chemrev.0c01108. Epub 2021 Apr 6.
10
Post-Translational Modifications That Drive Prostate Cancer Progression.
Biomolecules. 2021 Feb 9;11(2):247. doi: 10.3390/biom11020247.

本文引用的文献

1
Myristoylation of Src kinase mediates Src-induced and high-fat diet-accelerated prostate tumor progression in mice.
J Biol Chem. 2017 Nov 10;292(45):18422-18433. doi: 10.1074/jbc.M117.798827. Epub 2017 Sep 22.
2
The multifaceted roles of fatty acid synthesis in cancer.
Nat Rev Cancer. 2016 Nov;16(11):732-749. doi: 10.1038/nrc.2016.89. Epub 2016 Sep 23.
3
Fatty acylation of proteins: The long and the short of it.
Prog Lipid Res. 2016 Jul;63:120-31. doi: 10.1016/j.plipres.2016.05.002. Epub 2016 May 24.
5
Targeting FGFR Signaling in Cancer.
Clin Cancer Res. 2015 Jun 15;21(12):2684-94. doi: 10.1158/1078-0432.CCR-14-2329.
6
FGF23 promotes prostate cancer progression.
Oncotarget. 2015 Jul 10;6(19):17291-301. doi: 10.18632/oncotarget.4174.
7
N-terminal region of the catalytic domain of human N-myristoyltransferase 1 acts as an inhibitory module.
PLoS One. 2015 May 22;10(5):e0127661. doi: 10.1371/journal.pone.0127661. eCollection 2015.
8
FGF19 promotes progression of prostate cancer.
Prostate. 2015 Jul 1;75(10):1092-101. doi: 10.1002/pros.22994. Epub 2015 Apr 8.
9
Patient-derived models of acquired resistance can identify effective drug combinations for cancer.
Science. 2014 Dec 19;346(6216):1480-6. doi: 10.1126/science.1254721. Epub 2014 Nov 13.
10
The Tyrosine Kinase Adaptor Protein FRS2 Is Oncogenic and Amplified in High-Grade Serous Ovarian Cancer.
Mol Cancer Res. 2015 Mar;13(3):502-9. doi: 10.1158/1541-7786.MCR-14-0407. Epub 2014 Nov 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验