Pediatric Molecular Neuro-Oncology Research Laboratory, Children's Research Center, University Children's Hospital Zürich, Zurich, Switzerland.
Invasight, Zurich, Switzerland.
Cell Oncol (Dordr). 2023 Apr;46(2):331-356. doi: 10.1007/s13402-022-00753-x. Epub 2022 Dec 10.
Aberrant activation of the fibroblast growth factor receptor (FGFR) family of receptor tyrosine kinases drives oncogenic signaling through its proximal adaptor protein FRS2. Precise disruption of this disease-causing signal transmission in metastatic cancers could stall tumor growth and progression. The purpose of this study was to identify a small molecule ligand of FRS2 to interrupt oncogenic signal transmission from activated FGFRs.
We used pharmacophore-based computational screening to identify potential small molecule ligands of the PTB domain of FRS2, which couples FRS2 to FGFRs. We confirmed PTB domain binding of molecules identified with biophysical binding assays and validated compound activity in cell-based functional assays in vitro and in an ovarian cancer model in vivo. We used thermal proteome profiling to identify potential off-targets of the lead compound.
We describe a small molecule ligand of the PTB domain of FRS2 that prevents FRS2 activation and interrupts FGFR signaling. This PTB-domain ligand displays on-target activity in cells and stalls FGFR-dependent matrix invasion in various cancer models. The small molecule ligand is detectable in the serum of mice at the effective concentration for prolonged time and reduces growth of the ovarian cancer model in vivo. Using thermal proteome profiling, we furthermore identified potential off-targets of the lead compound that will guide further compound refinement and drug development.
Our results illustrate a phenotype-guided drug discovery strategy that identified a novel mechanism to repress FGFR-driven invasiveness and growth in human cancers. The here identified bioactive leads targeting FGF signaling and cell dissemination provide a novel structural basis for further development as a tumor agnostic strategy to repress FGFR- and FRS2-driven tumors.
成纤维细胞生长因子受体(FGFR)家族受体酪氨酸激酶的异常激活通过其近端衔接蛋白 FRS2 驱动致癌信号。精确破坏转移性癌症中这种致病信号的传递可能会阻止肿瘤的生长和进展。本研究的目的是鉴定 FRS2 的小分子配体,以中断激活的 FGFR 产生的致癌信号传递。
我们使用基于药效团的计算筛选来鉴定与 FRS2 的 PTB 结构域结合的潜在小分子配体,该结构域将 FRS2 与 FGFR 偶联。我们通过生物物理结合测定验证了与分子的 PTB 结构域结合,并在体外细胞功能测定和体内卵巢癌模型中验证了化合物的活性。我们使用热蛋白质组学分析鉴定潜在的先导化合物的脱靶。
我们描述了一种 FRS2 的 PTB 结构域的小分子配体,该配体可防止 FRS2 激活并阻断 FGFR 信号。该 PTB 结构域配体在细胞中显示出靶标活性,并阻止各种癌症模型中 FGFR 依赖性基质侵袭。在有效浓度下,该小分子配体在小鼠血清中可长时间检测到,并减少体内卵巢癌模型的生长。使用热蛋白质组学分析,我们还鉴定了潜在的先导化合物的脱靶,这将指导进一步的化合物优化和药物开发。
我们的结果说明了一种表型引导的药物发现策略,该策略确定了一种新的机制来抑制人类癌症中 FGFR 驱动的侵袭和生长。这里鉴定的针对 FGF 信号和细胞扩散的生物活性先导为进一步开发作为抑制 FGFR 和 FRS2 驱动肿瘤的肿瘤不可知策略提供了新的结构基础。