Suppr超能文献

基于机器学习的腺苷心肌灌注 SPECT 后心脏性死亡预测。

Prediction of cardiac death after adenosine myocardial perfusion SPECT based on machine learning.

机构信息

Medical Imaging Research Center, Illinois Institute of Technology, 3440 S. Dearborn St., Suite 100, Chicago, IL, 60616, USA.

Departments of Imaging and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA.

出版信息

J Nucl Cardiol. 2019 Oct;26(5):1746-1754. doi: 10.1007/s12350-018-1250-7. Epub 2018 Mar 14.

Abstract

BACKGROUND

We developed machine-learning (ML) models to estimate a patient's risk of cardiac death based on adenosine myocardial perfusion SPECT (MPS) and associated clinical data, and compared their performance to baseline logistic regression (LR). We demonstrated an approach to visually convey the reasoning behind a patient's risk to provide insight to clinicians beyond that of a "black box."

METHODS

We trained multiple models using 122 potential clinical predictors (features) for 8321 patients, including 551 cases of subsequent cardiac death. Accuracy was measured by area under the ROC curve (AUC), computed within a cross-validation framework. We developed a method to display the model's rationale to facilitate clinical interpretation.

RESULTS

The baseline LR (AUC = 0.76; 14 features) was outperformed by all other methods. A least absolute shrinkage and selection operator (LASSO) model (AUC = 0.77; p = .045; 6 features) required the fewest features. A support vector machine (SVM) model (AUC = 0.83; p < .0001; 49 features) provided the highest accuracy.

CONCLUSIONS

LASSO outperformed LR in both accuracy and simplicity (number of features), with SVM yielding best AUC for prediction of cardiac death in patients undergoing MPS. Combined with presenting the reasoning behind the risk scores, our results suggest that ML can be more effective than LR for this application.

摘要

背景

我们开发了机器学习(ML)模型,基于腺苷心肌灌注 SPECT(MPS)和相关临床数据来估计患者的心脏死亡风险,并将其性能与基线逻辑回归(LR)进行了比较。我们展示了一种方法,可以直观地传达患者风险背后的推理,为临床医生提供超出“黑盒”的见解。

方法

我们使用 122 个潜在的临床预测因子(特征)对 8321 名患者进行了多种模型的训练,包括 551 例随后发生的心脏死亡病例。准确性通过交叉验证框架内的ROC 曲线下面积(AUC)进行衡量。我们开发了一种显示模型原理的方法,以促进临床解释。

结果

基线 LR(AUC=0.76;14 个特征)优于所有其他方法。最小绝对收缩和选择算子(LASSO)模型(AUC=0.77;p=0.045;6 个特征)所需的特征最少。支持向量机(SVM)模型(AUC=0.83;p<0.0001;49 个特征)提供了最高的准确性。

结论

LASSO 在准确性和简单性(特征数量)方面均优于 LR,SVM 对 MPS 患者心脏死亡的预测具有最佳 AUC。结合呈现风险评分背后的推理,我们的结果表明,ML 在此应用中比 LR 更有效。

相似文献

1
Prediction of cardiac death after adenosine myocardial perfusion SPECT based on machine learning.
J Nucl Cardiol. 2019 Oct;26(5):1746-1754. doi: 10.1007/s12350-018-1250-7. Epub 2018 Mar 14.
3
Prediction of revascularization after myocardial perfusion SPECT by machine learning in a large population.
J Nucl Cardiol. 2015 Oct;22(5):877-84. doi: 10.1007/s12350-014-0027-x. Epub 2014 Dec 6.
5
Machine Learning-based Analysis of Rectal Cancer MRI Radiomics for Prediction of Metachronous Liver Metastasis.
Acad Radiol. 2019 Nov;26(11):1495-1504. doi: 10.1016/j.acra.2018.12.019. Epub 2019 Jan 30.
9
Radiomics-based machine learning models in STEMI: a promising tool for the prediction of major adverse cardiac events.
Eur Radiol. 2023 Jul;33(7):4611-4620. doi: 10.1007/s00330-023-09394-6. Epub 2023 Jan 12.
10
A radiomics method based on MR FS-T2WI sequence for diagnosing of autosomal dominant polycystic kidney disease progression.
Eur Rev Med Pharmacol Sci. 2021 Sep;25(18):5769-5780. doi: 10.26355/eurrev_202109_26795.

引用本文的文献

2
Predicting cardiac resynchronization therapy response: development and validation of a single photon emission computed tomography-based nomogram.
Quant Imaging Med Surg. 2025 May 1;15(5):4247-4261. doi: 10.21037/qims-2024-2700. Epub 2025 Apr 28.
3
Artificial Intelligence in Cardiovascular Imaging and Interventional Cardiology: Emerging Trends and Clinical Implications.
J Soc Cardiovasc Angiogr Interv. 2025 Mar 18;4(3Part B):102558. doi: 10.1016/j.jscai.2024.102558. eCollection 2025 Mar.
5
Artificial Intelligence in Imaging for Personalized Management of Coronary Artery Disease.
J Clin Med. 2025 Jan 13;14(2):462. doi: 10.3390/jcm14020462.
9
A machine learning method integrating ECG and gated SPECT for cardiac resynchronization therapy decision support.
Eur J Nucl Med Mol Imaging. 2023 Aug;50(10):3022-3033. doi: 10.1007/s00259-023-06259-4. Epub 2023 May 17.
10
Preparing for the Artificial Intelligence Revolution in Nuclear Cardiology.
Nucl Med Mol Imaging. 2023 Apr;57(2):51-60. doi: 10.1007/s13139-021-00733-3. Epub 2022 Feb 28.

本文引用的文献

1
Machine Learning in Medical Imaging.
IEEE Signal Process Mag. 2010 Jul;27(4):25-38. doi: 10.1109/MSP.2010.936730.
2
Evaluating Random Forests for Survival Analysis using Prediction Error Curves.
J Stat Softw. 2012 Sep;50(11):1-23. doi: 10.18637/jss.v050.i11.
4
Temporal trends in the frequency of inducible myocardial ischemia during cardiac stress testing: 1991 to 2009.
J Am Coll Cardiol. 2013 Mar 12;61(10):1054-65. doi: 10.1016/j.jacc.2012.11.056.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验