Medical Imaging Research Center, Illinois Institute of Technology, 3440 S. Dearborn St., Suite 100, Chicago, IL, 60616, USA.
Departments of Imaging and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
J Nucl Cardiol. 2019 Oct;26(5):1746-1754. doi: 10.1007/s12350-018-1250-7. Epub 2018 Mar 14.
We developed machine-learning (ML) models to estimate a patient's risk of cardiac death based on adenosine myocardial perfusion SPECT (MPS) and associated clinical data, and compared their performance to baseline logistic regression (LR). We demonstrated an approach to visually convey the reasoning behind a patient's risk to provide insight to clinicians beyond that of a "black box."
We trained multiple models using 122 potential clinical predictors (features) for 8321 patients, including 551 cases of subsequent cardiac death. Accuracy was measured by area under the ROC curve (AUC), computed within a cross-validation framework. We developed a method to display the model's rationale to facilitate clinical interpretation.
The baseline LR (AUC = 0.76; 14 features) was outperformed by all other methods. A least absolute shrinkage and selection operator (LASSO) model (AUC = 0.77; p = .045; 6 features) required the fewest features. A support vector machine (SVM) model (AUC = 0.83; p < .0001; 49 features) provided the highest accuracy.
LASSO outperformed LR in both accuracy and simplicity (number of features), with SVM yielding best AUC for prediction of cardiac death in patients undergoing MPS. Combined with presenting the reasoning behind the risk scores, our results suggest that ML can be more effective than LR for this application.
我们开发了机器学习(ML)模型,基于腺苷心肌灌注 SPECT(MPS)和相关临床数据来估计患者的心脏死亡风险,并将其性能与基线逻辑回归(LR)进行了比较。我们展示了一种方法,可以直观地传达患者风险背后的推理,为临床医生提供超出“黑盒”的见解。
我们使用 122 个潜在的临床预测因子(特征)对 8321 名患者进行了多种模型的训练,包括 551 例随后发生的心脏死亡病例。准确性通过交叉验证框架内的ROC 曲线下面积(AUC)进行衡量。我们开发了一种显示模型原理的方法,以促进临床解释。
基线 LR(AUC=0.76;14 个特征)优于所有其他方法。最小绝对收缩和选择算子(LASSO)模型(AUC=0.77;p=0.045;6 个特征)所需的特征最少。支持向量机(SVM)模型(AUC=0.83;p<0.0001;49 个特征)提供了最高的准确性。
LASSO 在准确性和简单性(特征数量)方面均优于 LR,SVM 对 MPS 患者心脏死亡的预测具有最佳 AUC。结合呈现风险评分背后的推理,我们的结果表明,ML 在此应用中比 LR 更有效。