Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland.
Department of Clinical Physiology, Nuclear Medicine and PET, Turku University Hospital, Turku, Finland.
Eur Heart J Cardiovasc Imaging. 2024 Jan 29;25(2):285-292. doi: 10.1093/ehjci/jead246.
To evaluate the incremental value of positron emission tomography (PET) myocardial perfusion imaging (MPI) over coronary computed tomography angiography (CCTA) in predicting short- and long-term outcome using machine learning (ML) approaches.
A total of 2411 patients with clinically suspected coronary artery disease (CAD) underwent CCTA, out of whom 891 patients were admitted to downstream PET MPI for haemodynamic evaluation of obstructive coronary stenosis. Two sets of Extreme Gradient Boosting (XGBoost) ML models were trained, one with all the clinical and imaging variables (including PET) and the other with only clinical and CCTA-based variables. Difference in the performance of the two sets was analysed by means of area under the receiver operating characteristic curve (AUC). After the removal of incomplete data entries, 2284 patients remained for further analysis. During the 8-year follow-up, 210 adverse events occurred including 59 myocardial infarctions, 35 unstable angina pectoris, and 116 deaths. The PET MPI data improved the outcome prediction over CCTA during the first 4 years of the observation time and the highest AUC was at the observation time of Year 1 (0.82, 95% confidence interval 0.804-0.827). After that, there was no significant incremental prognostic value by PET MPI.
PET MPI variables improve the prediction of adverse events beyond CCTA imaging alone for the first 4 years of follow-up. This illustrates the complementary nature of anatomic and functional information in predicting the outcome of patients with suspected CAD.
利用机器学习(ML)方法评估正电子发射断层扫描(PET)心肌灌注成像(MPI)相对于冠状动脉计算机断层血管造影(CCTA)在预测短期和长期预后方面的增量价值。
共有 2411 例疑似患有冠状动脉疾病(CAD)的患者接受了 CCTA 检查,其中 891 例患者因存在阻塞性冠状动脉狭窄的血流动力学障碍而被收入下游的 PET MPI 进行检查。使用极端梯度增强(XGBoost)ML 模型建立了两组模型,一组包含所有临床和影像学变量(包括 PET),另一组仅包含临床和 CCTA 相关变量。通过接收者操作特征曲线(ROC)下面积(AUC)分析比较两组模型的性能差异。在去除不完整的数据条目后,有 2284 例患者被纳入进一步分析。在 8 年的随访期间,发生了 210 例不良事件,包括 59 例心肌梗死、35 例不稳定型心绞痛和 116 例死亡。PET MPI 数据在观察时间的前 4 年内改善了 CCTA 对预后的预测,其 AUC 值最高出现在观察时间的第 1 年(0.82,95%置信区间 0.804-0.827)。此后,PET MPI 没有显著的预后增量价值。
在观察时间的前 4 年内,PET MPI 变量可改善 CCTA 成像单独预测不良事件的能力。这表明在预测疑似 CAD 患者的预后时,解剖学和功能信息具有互补性。